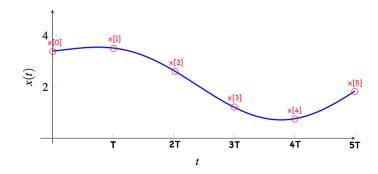
Sampling theorem

Let x be continuous signal bandlimited by frequency ω_{max} . We sample x with a period of T_s .



Given the discrete samples, we can try reconstructing the original signal f through sinc-interpolation where $\Phi(t) = \mathrm{sinc}\left(\frac{t}{T_s}\right)$

$$\hat{x}(t) = \sum_{n=-\infty}^{\infty} x[n]\Phi(t - nT_s)$$

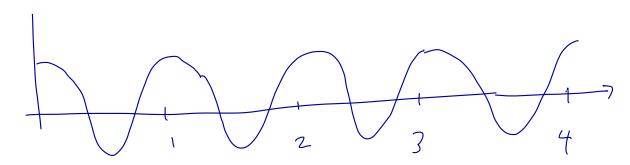
We define the **sampling frequency** as $\omega_s = \frac{2\pi}{T_s}$. The Sampling Theorem says if $\omega_{max} < \frac{\pi}{T_s}$, or $\omega_s > 2\omega_{max}$, then we are able to recover the original signal, i.e. $x = \hat{x}$.

1 Sampling Theorem basics

Consider the following signal, x(t) defined as,

 $W = 2\pi$, Period = (1)

a) Sketch the signal x(t), for $t \in [0, 4]$ s.

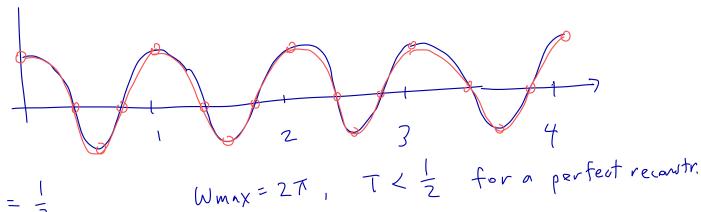


b) Sketch discrete samples of x(t) is the signal is sampled at a period of

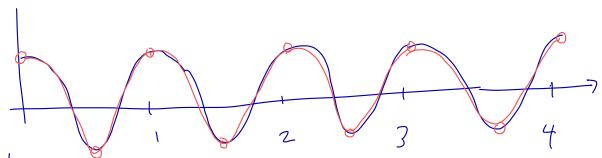
- i) $\frac{1}{4}$ s
- ii) $\frac{1}{2}$ s
- iii) 1s
- iv) 2s

How would you reconstruct a continuous signal $\hat{x}(t)$ if you only had the discrete samples for reconstruction?

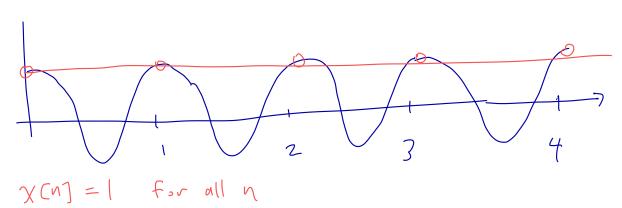
(i)
$$T_s = \frac{1}{4}$$



(ii)
$$T_s = \frac{1}{2}$$



(iii)
$$T_s = 1$$



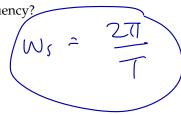
c) What is the maximum frequency, $\omega_{\rm max}$, in radians per second? In Hertz?

$$\chi(t) = \cos(2\pi t)$$
, $w_{max} = 2\pi r_{s}^{ad}$ or $f_{max} = 1Hz$

d) If I sample every *T* seconds, what is the sampling frequency?

$$W_s = \frac{2\pi}{T_s}$$
 $T_s = T$ $W_s = \frac{\pi}{T_s}$

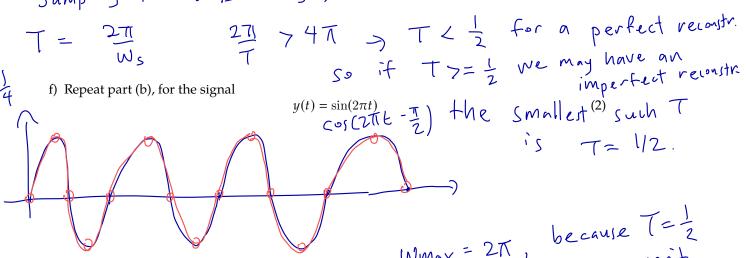
$$T_{\epsilon} = T$$



e) What is the smallest sampling period T that would result in an imperfect reconstruction?

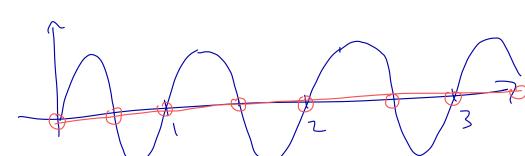
$$y(t) = \sin(2\pi t)$$

$$\cos(2\pi t) + \sqrt{2}$$

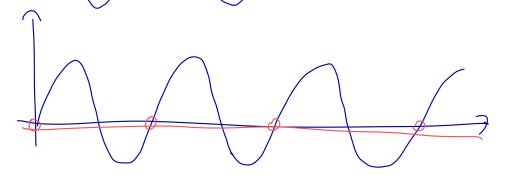


Wmax = 2T, because $T = \frac{1}{2}$ We aren't guaranteed a pertent reconstr.

(ii) T=1/2



(iv) T = (



Aliasing

Consider the signal $x(t) = \sin(0.2\pi t)$.

a) At what period T should we sample so that sinc interpolation recovers a function that is identically zero?

b) At what period T can we sample at so that sinc interpolation recovers the function f(t) =

$$-\sin\left(\frac{\pi}{15}t\right)?$$
Samples to be $\chi(n) = -\sin\left(\frac{\pi}{15} \cdot n\right)$
aliased signal $\chi(t) = -\sin\left(\frac{\pi}{15} t\right)$

$$\sin x = -c \cdot s(x \cdot x)$$

$$\sin x = -\cos(x + \frac{\pi}{2})$$

reconstructed freg

$$\chi(t) = \sin(\frac{\pi}{5}t)$$

$$\chi(n) = \sin(\frac{\pi}{5}nT)$$

$$= \cos(\frac{\pi}{5}nT - \frac{\pi}{2})$$

$$2\pi - \frac{\pi}{5}T = \frac{\pi}{15}T$$

 $= -\sin\left(\left(2\pi - \frac{\pi}{5}T\right)n\right)$