EECS 16B Fall 2020 Discussion 2B

1 RC Circuits

In this problem, we will be using differential equations to find the voltage across a capacitor over
time in an RC circuit. We set up our problem by first defining three functions over time: I(t) is the
current at time ¢, V(t) is the voltage across the circuit at time ¢, and V(t) is the voltage across the
capacitor at time .

Recall from 16A that the voltage across a resistor is defined as Vx = RIg where I is the current
across the resistor. Also, recall that the voltage across a capacitor is defined as V¢ = ol where Q is
the charge across the capacitor.
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Figure 1: Example Circuit

a) First, find an equation that relates the current through the capacitor Ic () with the voltage
across the capacitor V¢ (t). d Q
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b) Using nodal analysis, write a differential equation for the capacitor voltage V(). Note that
this is also the voltage for the node #n,.
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¢) Let’s suppose that at t = 0, the capacitor is charged to a voltage Vpp (Vc(0) = Vpp). Let’s also

assume that V(t) = 0 for all t > 0.
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Solve the differential equation for V¢(t) for t > 0.
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d) Now, let’s suppose that we start with an uncharged capacitor Vc(0) = 0. We apply some
constant voltage V(t) = Vpp across the circuit. Solve the differential equation for V() for

t>0.
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d) Now, let’s suppose that we start with an uncharged capacitor Vc(0) = 0. We apply some
constant voltage V(t) = Vpp across the circuit. Solve the differential equation for V() for

t>0.

R Ity Velt)

AW

C) Vop —_— ¢

Albernate ol

Figure 3: Circuit for part (e)
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2 Graphing RC Responses

Consider the following RC Circuit with a single resistor R, capacitor C, and voltage source V (¢).
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Figure 4: Example Circuit

a) Let’s suppose that at t = 0, the capacitor is charged to a voltage Vpp (V.(0) = Vpp) and that
V(t) =0 for all t > 0. Plot the response V(t). o ¢
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b) Now let’s suppose that at t = 0, the capacitor is uncharged (V.(0) = 0) and that V(¢) = Vpp for
all t > 0. Plot the response V(). —
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To better understand our responses, we now define a time constant which is a measure of how
long it takes for the capacitor to charge or discharge. Mathematically, we define 7 as the time at
which V¢ (1) is 2 = 36.8% away from its steady state value.
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Figure 5: Different values of capacitor voltage at different times, relative to 7.

¢) Suppose that Vpp =5V, R =100Q, and C = 10 uF. What is the time constant 7 for this circuit?
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d) Going back to part (b), on what order of magnitude of time (nanoseconds, milliseconds, 10’s of o 0 ok

seconds, etc.) does this circuit settle (V, is > 95% of its value as f — o0)?
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e) Give 2 ways to reduce the settling time of the circuit if we are allowed to change one component

in the circuit.
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f) Suppose we have a source V(t) that alternates between 0 and Vpp = 1V. Given RC = 0.1s,

plot the response V. if V.(0) = 0.
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g) Now suppose we have the same source V() but RC = 1s, plot the response V. if V.(0) = 0.
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