EECS 16B Fall 2020 Discussion 7B

1 Conditions for Equilibria

Continuous-Time Systems

Let us take a closer look at the conditions for a linear system represented by the differential equation
d . - -
Ex(t) = AX(t) + Bii(t) 1)

From the get-go we see that (X *, i *) = (0, 0) must be an equilibrium point. This is since the system is
at rest. Now if we put in a constant input ii * then to solve for equilibria, we get the following system
of equations

A% +Bi* =0 )

To solve for the states ¥ in which the system would be in equilibrium, our analysis boils down to
whether the square matrix A is invertible

a) If A is invertible, then there is a unique equilibrium point ¥* = —A™'Bii *.
b) If A is non-invertible, depending on the range of A, we have two scenarios.

e If Bii € Col(A) then we will have infinitely many equilibrium points.

e If Bii ¢ Col(A) then the system has no solution and we will have no equilibrium points.

Discrete-Time Systems

Now let’s take a look at the discrete-time system
X(t +1) = AX(t) + Bii(t) 3)

Again we see that (6, 6) is an equilibrium point but notice that the conditions for equilibria are
different for discrete-time systems. A system is in equilibrium if it is not changing. In otherwords,
this means that X *(f + 1]) = ¥ *(t) therefore, for a constant input ii * we get the following system of
equations

¥=AX¥+Bii* = (I-A)X=Bi" 4)

The conditions for equilibria now depend on the matrix I — A being invertible instead of the matrix
A.

1 This should be review from 16A /54, but we restate it here since it isn’t quite obvious when A is singular or non-invertible.
Normally a singular matrix has infinite solutions but take the system AX = bwith A = [i 8] and b = [ﬂ . This leads to a

contradiction that x; = 0 # 1.
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2 Stability
Continuous time systems
A continuous time system is of the form:
i—f(t) = AX(t) + Bii(t)

This system is stable if Re{A;} < 0 for all A; , where A;’s are the eigenvalues of A. If we plot all A;
for A on the complex plane, if all A; lie to the left of Re{A;} = 0, then the system is stable.

Im{Ai}

Stable Unstable

Re{/\i}

If Re{A;} > 0, the system is unstable in the context of BIBO stability.
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Discrete time systems

A discrete time system is of the form:

X(t +1) = AX(t) + Bii(t)

This system is stable if |A;| < 1 for all A;, where A;’s are the eigenvalues of A. If we plot all A; for
A on the complex plane, if all A; lie within (not on) the unit circle, then the system is stable.
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If [A| > 1, we say the system is unstable in the context of Bounded-Input Bounded-Output (BIBO)
stability.
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3 Jacobian Warm-Up

du
Consider the following function f : R? > R3 _gf/\ I (M) = u
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4 Linearization

Gxi

Consider a mass attached to two springs:
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We assume that each spring is linear with spring constant k and resting length X,. We want to
build a state space model that describes how the displacement y of the mass from the spring base
evolves. The differential equation modeling this system i: —?ﬂ—k(y - Xo \/yzv)
a) Write this model in state space form & = f(x). () Kl z
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b) Find the equilibrium of the state-space model. You can assume X, < a.
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¢) Linearize your model about the equilibrium.
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d) Compute the eigenvalues of your linearized model, Is this equilibrium stable
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5 Stability in discrete time system

Determine which values of a and $ will make the following discrete-time state space models stable.
Assume, a and f3 are real numbers and b # 0.

a)
x(t+1) = ax(t) +bu(t)

b)

Bt +1) = [g ‘ﬂ %(t) + bii(t)

F(t+1) = [(1) ‘ﬂ %(t) + bii(t)




