EECS 16B Fall 2020 Discussion 8B
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1 Scalar feedback control

Suppose that x has the following discrete-time dynamics: X( 0) = |
x(t +1) = Ax(f) + bu(t), x(0) = xg (1)
a) Assumingthatxy = landu = 0, sketch x(t) forafew timestepsforA € {-1.1,-1,-0.5,0.5,1, 1.1}.
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b) What values of A will result in convergence of x to its equilibrium? A scalar system having
such a A is called stable.
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¢) If u(t) = up and the system is stable, what does x converge to? Sketch stable trajectories of x for
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d) If x(t + 1) = Ax(¢t) + bu(t) is unstable, describe feedback laws u(t) = kx(t) that stabilize the
equilibrium x = 0.
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e) Now, consider the continuous time system

%x(t) = Ax(t) + bu(t) )

Consider the case where this system is unstable (A > 0). Design a feedback law u(f) = kx(t)
which stabilizes the equilibrium x = 0. You can assume that b > 0.
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2 Eigenvalues Placement in Discrete Time
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Consider the following linear discrete time system Y eally  ace
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a) Is this system controllable? B
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b) Is the linear discrete time system stablg?
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c) Derive a state space representation of the resulting closed loop system using state feedback of
the form u(t) = [k1 k2] X()
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d) Find the appropriate state feedback constants, k1, ks in order the state space representation of
the resulting closed loop system to place the eigenvaluesat A; = —3,15 = 4 7 |
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e) Suppose that instead of [(1)] u(t) in , we had 1 1u(t) as the way that the discrete-time control

acted on the system. Is this system controllable from u(t)?

f) For the part above, suppose we used [ky, k2] to try and control the system. What would the
eigenvalues be? Can you move all the eigenvalues to where you want? Give an intuitive
explanation of what is going on.
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