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| Overview

In the next module of the course, we will be learning about dynamical systems and how we can control
them. Some examples are an airplane’s flight, the air inside a building, network traffic on the internet, or
even a circuit. We will learn how to develop controllers for these systems to regulate particular quantities that
we care about, like an autopilot to level an airplane’s flight, a thermostat to keep a building at a comfortable
temperature, internet congestion control to manage data rates, or a voltage regulator to limit the power
consumption. Other dynamical systems and controllers can be found in nature, like the biochemical systems
that regulate conditions inside a living cell.

When we want to study or control a dynamical system, our first step is usually to write out equations that
describe its physics. These equations are called a model, and they predict what a system will do over time.
We will study systems that change continuously in time like electrical circuits, and systems that evolve in
discrete time steps, like the yearly number of professors in EECS.

A state-space model will consist of state variables xi,...,x, and inputs u,...,u,. The states can be written
together in a state vector X(¢) € R” where n is the number of state variables that describe the system. The
state variables should fully represent the state of a dynamical system at a given time, like the position
and velocity of masses in a mechanical system. Inputs are parameters that we have control over such as
a voltage source or a force we can apply on an object. The majority of our models will involve vector
differential equations but our emphasis is no longer on the solutions to these differential equations, rather
we are interested in the overall behavior of the system and how we can control it.

2 Continuous-Time Systems

We will start by looking at continuous time systems. A continuous-time system is one in which all of the
input, output, and state-variables are continuous time functions. The model for a continuous-time system
will be a vector-differential equation in terms of its state vector X(#) € R”" and input (7).
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The function f(X(¢),i(t)) is an length n-vector containing the derivative of each state-variable.

To illustrate this, we can expand out the vector dynamics equation

&xi(t) Ji(xX(2),u(r))
;| = : @
(1) Ja(X(2),4(2))

A continuous-time system is linear if it can be expressed in the form 4¥(r) = A¥(t) + Aii(t).
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2.1 Example

The motion of the pendulum depicted on the right is governed by the differential equation

do(r)

d*o(t

(t) =—kl
dr? dt

where the left hand side is mass x accelaration in the tangential direction and the right hand side is total force

acting in that directionm The constant k represents the damping constant of the pendulum due to drag forces.
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—mgsin6(r) 3)

To bring this second order differential equation to state space form we define the state variables

do(t
w260  wi e
and note that they satisfy
dx (t
2w
dxy(t) k g @
di :—axz(t)—ESin)ﬂ(l‘).

The first equation here follows from the definition of x,(7), and the second equation follows from . In this
state representation we have two first order differential equations, one for each state variable, instead of the
second order differential equation (3)) for one variable.

Here we did not consider disturbances or control inputs that could be applied (say, to balance the pendulum
in the upright position) so the equations (4) have the form (??) with

fEe) = 20

—%)Q(l‘) — %sinxl (l)

Note how we are unable to write a matrix-differential equation %)?(t) = AX(t). This is because the system is
non-linear. We will define what it means to be a linear-system in a later section.

IThis equation can be derived using techniques from Physics 7A by writing out an F = ma equation. Often times, we will give
you the dynamics of a system since we don’t assume physics as a prerequisite to this class.
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3 Discrete-Time Systems

Another important type of system to look at is are discrete-time systems. A discrete-time system is one
in which all of the input, output, and state-variables are functions in discrete time. This means that the
all of our functions will map natural numbers N = (0,1,2,...) to the real numbers R. Similar to how we
described continuous-time systems through differential equations, we can describe discrete-time systems
through difference equations.

X[t 4+ 1] = f(X[], ult]) )

where f(X[t]) is an length n-vector that dictates the value of the state variables at the next time step 7 + 1.
The form of f depends on the system we are modeling as we will see in examples.

3.1 Notation

To distinguish between a discrete-time and continuous time system, we will use square brackets X[f] for
discrete-time systems whereas continuous time systems will use the normal round brackets, X().

3.2 Difference Equations

The discrete-time analog of differentiation % is a time delay X[t + 1]. Therefore, we can write out a first-order
scalar difference equation of the form

xle+1] = ax[t] + Bulr] (6)

where ut] is a discrete time input. There is an entire study of solving difference equations that is connected
to solving differential equations, but we will not be emphasizing this in this course. However, we will note
that when u[t] = 0, x[t] = &' is a solution. Try to verify this on your own.

3.3 The Discrete World

Since the universe runs in continuous time, one might ask what the motivation behind discrete-time systems
is. While many systems are represented by continuous-time systems, computers are fundamentally discrete.
This means if we would like to provide inputs into our system using a computer, we will need to work with
a discrete-time system.

If the original system is in continuous-time, we will have to sample data from this continuous time system
to create a discrete-time system. We will explore how to do this in a later note.

3.4 Examp]e

Suppose we had a model that could predict the whether the weather will be sunny or rainy depending on the
current day’s weather.

The arrows on the graph represent the probability of transitioning from a sunny to rainy day and vice-versa.
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We could define the states x;[¢] and x,[¢] which represent the probability that it is sunny and rainy on a given
day n. Then based on the graph, we can write the following recurrence relation

x1[t+ 1] =0.9x[t] + 0.5x, [¢] @)
xz[t + 1] =0.1x; [l‘] +0.5x> [l‘] (8)

To express this in the form of Equation , we can express the function f as
iy 10.9x1[t] +0.5xt])| |09 0.5
FE) = [0.1x1 1]40.500]| ~ 0.1 05| ©)
Note how we are able to write a matrix equation X[f + 1] = AX[¢]. This is unrelated to the fact that the system
is discrete, rather it is because the system is linear:
4 Linear Systems

A function f is linear if it satisfies the two properties:

1. Scaling: f(ax) = af(x) (10)
2. Additivity: f(x+y) = f(x)+ f(y) (11)

So far, we have spent a great deal of time studying linear systems, but we’ve never bothered to call them
linear. In fact, any system represented by a matrix f(X) = AX is a linear system since f satisfies the two
properties above.

4.1 Examples

We will give some examples of linear and nonlinear functions.

Function Linear Non-linear
flx)=2x Yes No
flx)=3x+5 No Yes
f(x) = sin(x) No Yes
flx) =x? No Yes
flx,u) =oax+Pu  Yes No
f(X) =AX Yes No
f(®) =AX+b No Yes
f(X,i) =AX+Bii  Yes No

For a continuous or discrete-time system represented by the equation 7 x = f(x,u) or X[n+1] = f(X,i), we
say that the system is linear if f is a linear function.
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4.2 Motivation

Why do we care about linear systems and what do we do if our system is non-linear? Linear systems are very
nice since they often have predictable behavior. We will be developing a large toolbox on how to analyze
and control these linear systems. On the other hand, nonlinear systems often have unpredictable behavior
and will be more difficult to control.

Note that many systems in the real world are non-linear often due to factors such as noise, disturbances, or
internal resistive forces. If a system is non-linear, then we will try to find a small region where the system is
in fact linear. This technique is called linearization and will be the focus of the next note.

Contributors:
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