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Fall 2020 UC Berkeley Note 12

1 Overview
In Module 1 we saw that the solution to a differential equation can be written as a sum of its homogeneous
and particular solution in the form

x(t) = xhomogeneous(t)+ xparticular(t) (1)

In the context of linear systems, the homogenous solution is referred to as the natural response while the
particular solution is the forced response resulting from the input u(t).

x(t) = xnatural(t)+ x f orced(t) (2)

Ideally we would like the natural response to decay to zero so that x(t) at steady state is equal to the force
resopnse from the input. In this note, we will look into the stability of a system and analyze whether a
system is robust to any error or disturbances.

2 Stability
Before analyzing continuous and discrete-time systems, we need to define what it means for a system to be
stable. It turns out that there are multiple definitions of stability each depending on the context. A system is
asymptotically stable if the natural response of system converges to 0.

From an intuitive approach, this means that the system naturally decays to 0 given zero input. One example
of an asymptotically stable system is the one represented by the differential equation

d
dt

x(t) =−2x(t) (3)

The visual below shows that the response x(t) decays to 0 without an input.
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Alternatively, we can view stability through our input u(t). A system is Bounded Input Bounded Output
Stable or BIBO Stable if for every bounded input, the output is also bounded. In this perspective, we think
of our system as a box that shapes our input and gives an output response x(t)
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Although we won’t do it in this note, we can show that asymptotic stability is a stronger claim than BIBO
stability. The two definitions are almost identical and if a system is controllable, observable, minimal, and
asymptotically stable, it is also BIBO stable.

This means that every asymptotically stable system will also be BIBO stable. For the purposes of this
class, whenever we refer to the term stability we will often be referring to asymptotic stability. While all
of our proofs for stability look at bounded inputs and bounded outputs, they are all assuming the stronger
conditions of controllability, observability, and minimality.1

3 Continuous-Time Stability
We start by analyzing the stability of a continuous-time system since we are familiar with how to solve
differential equations. We will begin with the scalar case and then build it up to the multivariate vector case.

3.1 Model Errors
Often times, a model for a system does not fully capture its behavior. Factors such as nonlinearities, noise,
or even disturbances can cause our measurements to have large error terms.

Therefore, we include a new term~e representing the error in our state-space model at time t.

d
dt
~x(t) = A~x(t)+B~u(t)+~e(t) (4)

These errors are often unpredictable and unobservable meaning a stable system must be robust to all of these
types of error. Therefore, to perform our analyses, we will start by assuming our error is bounded by some
constant or‖~e‖< ε.

3.2 Scalar Stability
Consider the following continuous-time system with initial condition x(0) = x0

d
dt

x(t) = λx(t)+w(t) (5)

The term w(t) is a combined term which is the sum of the input u(t) and error e(t).

We know that this differential equation has the following solution for t ≥ 0

x(t) = x0eλ t +

t∫
0

w(τ)eλ (t−τ)dτ (6)

Now we will break this down into cases by looking at the value of λ assuming
∣∣w(t)∣∣< ε.

1We’ll take a look at what all of these mean in a later note. Don’t worry about these definitions for now.
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3.2.1 Complex λ

When λ is a complex number, we can break it down into its real and imaginary parts as λ = σ + jω. Upon
analyzing our solution, we see that∣∣∣eλ t

∣∣∣= ∣∣∣e(σ+ jω)t
∣∣∣= ∣∣∣eσte jωt

∣∣∣= ∣∣eσt
∣∣∣∣∣e jωt

∣∣∣= eσt (7)

The last equality comes from the fact that a complex exponential e jωt has magnitude 1. Therefore, this
analysis shows that the imaginary part of λ will never affect the boundedness of x(t); hence it won’t affect
the stability of the system.

Recall from the circuits module that we showed for an underdamped system that the imaginary part of the
eigenvalues added oscilations to the system. This understanding is identical and follows from what we have
shown above.

3.2.2 Positive λ

Now that we have shown that the imaginary part of λ cannot affect the stability of our system, let’s analyze
what happens when Re[λ ]> 0

We immediately see that the natural response xn(t) = x0eλ t will go to infinity as t→∞. Therefore, we claim
that this system is unstable since the repsonse is unbounded regardless of what the input is.

3.2.3 λ = 0

Now let’s analyze what happens when Re[λ ] = 0. For simplicity, we assume λ = 0 since the imaginary part
will not affect stability. For the system to be stable, the response x(t) must be bounded for any bounded
input. However, let’s take the case when w(t) = 1

x(t) = x0eλ t +

t∫
0

eλ (t−τ)dτ = x0 +

t∫
0

dτ = x0 + t (8)

As t → ∞, the response will be unbounded since x(t)→ ∞. Since the system is not bounded for every
bounded input, we claim that the system is unstable when Re[λ ] = 0.

3.2.4 Negative λ

It may seem like the system is never stable, but we have one more case when Re[λ ] < 0. It turns out that
x(t) will always be bounded as long as w(t) is bounded. To show this, we again look at the solution x(t).

This proof is quite involved and requires ideas such as the Triangle Inequality for Sums and Integrals

∣∣x(t)∣∣=
∣∣∣∣∣∣x0eλ t +

t∫
0

w(τ)eλ (t−τ)dτ

∣∣∣∣∣∣≤|x0|eλ t +

∣∣∣∣∣∣
t∫

0

w(τ)eλ (t−τ)dτ

∣∣∣∣∣∣ (9)

≤
∣∣∣x0eλ t

∣∣∣+ t∫
0

∣∣∣w(τ)eλ (t−τ)dτ

∣∣∣≤ ∣∣∣x0eλ t
∣∣∣+
∣∣∣∣∣∣eλ t

t∫
0

εe−λτdτ

∣∣∣∣∣∣ (10)

≤
∣∣∣x0eλ t

∣∣∣+∣∣∣∣∣eλ tε

λ

∣∣∣∣∣∣∣∣e−λ t −1
∣∣∣= ∣∣∣x0eλ t

∣∣∣+∣∣∣∣ ε

λ

∣∣∣∣∣∣∣1− eλ t
∣∣∣ (11)

It follows that x(t) must be bounded since x(t) is less than the sum of two terms, both of which are bounded.
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3.3 System Stability
From the scalar case, we have discovered that the real part of the eigenvalue of the differential equation
plays a crucial role in determining stability. We saw that when Re[λ ]< 0, the scalar system is stable since
every bounded input yieled a bounded output.

To extend this to the vector case, we will use go back to our familiar method of changing coordinates

d
dt
~x(t) = A~x(t)+B~u(t)+~e(t) =⇒ d

dt
~z(t) = Λ~z(t)+V−1B~u(t)+V−1~e(t) (12)

In our eigenbasis coordinates, we can uncouple all of our equations and see that

z1(t) = λ1(t)z1(t)+w1(t)
...

zn(t) = λn(t)zn(t)+wn(t)

The term wi(t) is again a combination of the input and error terms. If all our eigenvalues λ1, . . . ,λn have real
part less than 0, we can say that our system is stable.

3.3.1 Non-Diagonalizable Case

Now what is the matrix A is non-diagonalizable? Just like how we solved differential equations for the
critically-damped case, it turns out that we can change coordinates to a basis in which the matrix A has
an upper-triangular representation. Let us call this basis U and it turns out that the diagonal entries of our
upper-triangular reprsentation, R, has the eigenvalues of A on its diagonal.

A =URU−1 =U


λ1 r12 . . . r1n

0 λ2 . . . r2n
...

. . . . . .
...

0 . . . 0 λn

U−1 (13)

We will prove its existence in a later note since its existence is not the focus of this note.

With this in mind, we can again change coordinates to the basis represented by the columns of U

d
dt
~x(t) = A~x(t)+B~u(t)+~e(t) =⇒ d

dt
~z(t) = R~z(t)+U−1B~u(t)+U−1~e(t) (14)

In our new coordinate system, we can again uncouple all of our equations and see that

z1(t) = λ1(t)z1(t)+ r12z2(t)+ . . .+ r1nzn(t)+w1(t)
...

zn(t) = λn(t)zn(t)+wn(t)

We immediately see that if Re(λn)< 0, then the nth differential equation is stable. We can then move up to
the n−1st differential equation represented by

d
dt

zn−1(t) = λn−1zn−1(t)+ rn−1,n zn(t)+wn−1(t) (15)
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Since zn(t) is stable and hence a bounded function, we can define vn−1(t) = rn−1,n zn(t)+wn−1(t) as the
input to our n−1st differential equation. By the same logic, zn−1(t) will be bounded if Re[λn−1]< 0.

Continuing the argument using backwards induction, it again follows that if all of the eigenvalues of A have
real part less than 0, the system will be stable. Note that all of the eigenvalues must have real part less than
0. If even one of the eigenvalues has a real part greater than or equal to zero, the system will be unstable.

4 Discrete-Time Stability
We will now move onto analyzing and defining the criteria for the stability of a discrete-time system. Note
that if we can define a stability condition for the scalar case, extending it to the vector case will be identical
to the work we did in the previous section by changing coordinates. Therefore, we shall only consider scalar
stability for discrete-time systems and easily extend it to the vector case.

4.1 Scalar Case
Consider the following scalar discrete-time system

x[t +1] = λx[t]+w[t] (16)

where w[t] is a combined term which is the sum of the input u[t] and the error e[t].

Now let’s try writing x[t] as a linear combination of the previous states

x[t] = λx[t−1]+w[t−1] = λ (λx[t−2]+w[t−2])+w[t−1]

= λ
2x[t−2]+λw[t−2]+w[t−1]

...

= λ
nx[0]+ (λ n−1w[0]+ . . .+λw[t−2]+w[t−1])

If
∣∣w[t]∣∣< ε for all n then we could bound the summation for x[t]∣∣x[t]∣∣≤ ∣∣∣λ nx[0]+ (λ n−1w[0]+ . . .+λw[t−2]+w[t−1])

∣∣∣ (17)

≤
∣∣λ nx[0]

∣∣+∣∣∣λ n−1
ε + . . .+λε + ε

∣∣∣ (18)

=
∣∣λ nx[0]

∣∣+|ε|∣∣∣λ n−1 + . . .+λ +1
∣∣∣ (19)

The right hand side contains a geometric series with common ratio r = λ . As t→∞, the sum converges only
when |λ |< 1. This implies that a scalar discrete-time system is unstable when |λ | ≥ 1 since the summation
diverges and is unbounded. We will now continue our analysis assuming |λ |< 1. If the summation converges
to some finite value B, then it must be that∣∣x[t]∣∣≤ ∣∣λ nx[0]

∣∣+|εB| (20)

Formally the value of B is 1
1−λ

and this implies that x[t] is bounded when |λ | < 1. Therefore, we conclude
by saying a discrete-time system is stable when |λ |< 1. Note how our analysis does not depend on the fact
that λ is real. In fact, for a complex λ = σ + jω, the system is stable when

∣∣∣σ2 +ω2
∣∣∣< 1. 2

2Recall that the magnitude of a complex number z = a+b j is |z|=
√

a2 +b2. Since the square-root function is monotonic, or
always increasing, showing |z|< 1 is equivalent to showing |z|2 < 1.
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4.2 Vector Case
The vector case will be near identical meaning the system is stable when all of its eigenvalues are stable.

|λ1|< 1, . . . ,|λn|< 1 =⇒ Discrete-Time System is stable (21)

5 Examples
Now that we have a well-defined criteria for stability, let’s take a look at some examples. For the most part,
stability analysis will boil down to finding the eigenvalues of the matrix A.

5.1 Downward Pendulum
Let’s come back to our favorite linearized pendulum example.

Tin

θ

`

mg

mgsinθ

Recall that the linearized system can be represented by the following differential equation

d
dt
~x`(t) =

[
0 1
−g
`

−k
m

]
~x`(t)+

[
0
1
`

]
u`(t) (22)

The eigenvalues of this system can be computed through the characteristic polynomial

λ
2 +

k
m

λ +
g
`

=⇒ λ =− k
2m
± 1

2

√(
k
m

)2

− 4g
`

(23)

Since all of the constants k,m,g, ` are positive, the real part of the eigenvalues will both be negative implying
that the system is stable. Intuitively if we slightly perturb the downward pendulum with a small torque, it
returns back to its original equilibrium.
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5.2 Inverted Pendulum
Now let’s recall the linearized inverted pendulum system represented by the following differential equation

d
dt
~x`(t) =

[
0 1
g
`

−k
m

]
~x`(t)+

[
0
1
`

]
u`(t) (24)

The eigenvalues of this system can be computed through the characteristic polynomial

λ
2 +

k
m

λ − g
`

=⇒ λ =− k
2m
± 1

2

√(
k
m

)2

+
4g
`

(25)

A quick computation shows that the eigenvalues now both have positive real parts. This means the system
is unstable and the response will “blow up.” From a physical perspective, if we slightly perturb the inverted
pendulum, it will rapidly fall from its upward balanced state.

Since this was a linearized system, we see that θ = π is an unstable equilibrium point and the linear ap-
proximation to the system quickly becomes invalid since the angle θ doesn’t actually “blow up” and go to
infinity.

5.3 RLC Circuit
Let’s recall the process of charging an RLC circuit.

+

−
vin

t = 0

S1

t = 0S2

C

+ −
vc

i R

+ −vR

L

+ −vL

We can pick the vc and iL to be state-variables and the system can be reprsented as

d
dt

[
vc(t)
iL(t)

]
=

[
0 1

C
− 1

L −R
L

]
+

[
0
1
L

]
vin(t) (26)

The eigenvalues of this system can be computed through the characteristic polynomial 3

λ
2 +

R
L

λ +
1

LC
=⇒ λ =− R

2L
± 1

2

√(
R
L

)2

− 4
LC

(27)

We again see that the real part of the eigenvalues must be negative since R,L, and C are all greater than 0.
Therefore an RLC circuit will always be stable.

3Note the similarities to the pendulum example. This type of second order system is characterized as a harmonic oscillator and
is very important when approximating higher-order systems.
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5.4 LC Tank
Now let’s consider the LC Tank case in which R = 0

L

iL

C

+

−

vout

ic

The differential equation representing this system was

d
dt

[
vout

iL

]
=

[
0 − 1

C
1
L 0

][
vout

iL

]
(28)

The eigenvalues of this system can be computed as

λ
2 +

1
LC

=⇒ λ =± j

√
1

LC
(29)

Since the real part of the eigenvalues are equal to 0 we characterize this system as unstable. However,
from an intuitive presepective, the energy in the capacitor and inductor will continually slosh back and
forth meaning the response is always bounded. This is an example of a system that has an always bounded
response but is not asymptotically stable since the natural response does not decay to zero.

To show that this system is indeed unstable, try applying a voltage input of vin(t) = cos(ωt) where ω =
√

1
LC

across the capacitor. While tedious, a computation can show that the output does indeed blow up and go to
infinity.

6 Conclusion
In this note, we analyzed the stability of a linear system by starting with the scalar case and building it up to
the vector case. The entire analysis was reduced to looking at the eigenvalues of the matrix A and we were
able to create the following criteria for stability:

• For a continouous-time system,

Re[λ1]< 0, . . . ,Re[λn]< 0 =⇒ Continuous-Time System is stable (30)

• For a discrete-time system,

|λ1|< 1, . . . ,|λn|< 1 =⇒ Discrete-Time System is stable (31)

We mentioned at the beginning of the note that we would like our systems to be stable so that the natural
response converges to zero. So what would happen if our system is unstable? Would it still be possible to
control our systems? These are questions that we will answer in the next two notes.
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