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1 Overview
In the previous note, we analyzed the stability of linear systems and ended by asking whether it would be
possible to control unstable systems. So let’s start by asking the following question: Can any system be
controlled? In other words, is it possible after a finite amount of time for our system to reach any state in
our state-space?

We will see that not every system can be controlled and that there is a quick test to see if a system is indeed
controllable. To show this, we will take a step by step recursive approach similar to how we proved stability
for the discrete-time case.

2 Control Inputs
The first question that we should ask is whether we can control any discrete-time system. Let’s start with
the scalar case

x[t +1] = λx[t]+bu[t] (1)

Based on the observations from the previous note, it seems that this system can always be controlled, except
for when b = 0. When b = 0, it is impossible for our input to even reach our system. Therefore, the system
acts on its own and we will see its natural response.

Similarly for the vector case, if our system was represented as

~x[t +1] = A~x[t]+B~u[t] (2)

Our B matrix may put some restrictions on how we can directly control our system. For example, take the

case when B =
[
0 1

]T
. Here, the input is only able to directly affect the second state.

Now that we have established that not every system can be controlled, let’s take a look at a few examples.

2.1 One Shot Wonder
Consider the discrete-time system with initial state~x[0].

~x[t +1] = A~x[t]+B~u[u] (3)

Our goal is to reach the state~x ∗ in one timestep. We can unroll the difference equation to see that

~x[1] = A~x[0]+B~u[0] (4)

Since~u[0] is an input we have control over, if~x ∗−A~x[0]∈Range(B), we can reach our target in one timestep.

However, note that the requirement of reaching a desired state in one-timestep is often a stringent one.
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Therefore, in the next example, we observe what happens after two time steps.

2.2 Second Chance
Consider the discrete-time system with initial state~x[0] =~0.

~x[t +1] = A~x[t]+B~u[u] (5)

Then after one time-step, we can unroll the difference equation and to see that

~x[1] = A~x[0]+B~u[0] = B~u[0] (6)

Since u[0] is an input we have control over, after one time-step, we can reach anywhere in the span of the
columns of B. To see this, recall that1

B~u[0] =
[
~b1 ~b2

][~u1[0]
~u2[0]

]
(7)

After one more time-step, we again unroll the difference equation

~x[2] = A~x[1]+B~u[1] = AB~u[0]+B~u[1] (8)

and it follows that after two time steps, we can reach anywhere in the span{B,AB}.
Since we have relaxed our constraints to two time steps, the range of points we can reach has also grown.

2.3 nth Time’s the Charm
Let’s now see which states we can reach after n time-steps. Assuming a non-zero initial condition,

~x[n] = A~x[n−1]+B~u[n−1] = A(A~x[n−2]+B~u[n−2])+B~u[n−1] (9)

= A2~x[n−2]+AB~u[n−2]+B~u[n−1] (10)
... (11)

= An~x[0]+
n−1

∑
k=0

An−1−kB~u[k] (12)

We could also write this out in the following matrix-vector form

~x[n] = An~x[0]+
[
B AB . . . An−1B

]
~u[n−1]

...
~u[0]

 (13)

The inputs~u[0],~u[1], . . . ,~u[n−1] are all chosen by the person designing the controller, so after n time-steps,
we can reach anywhere in the

Span{B,AB, . . . ,An−1B}

1The notation~ui[0] refers to the ith entry of the vector~u[0].
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3 Controllability
With all of our intuition from the previous section, let us now try to formalize an argument for when a system
is controllable. A given system is controllable if we can reach any state in a finite number of time steps.

We saw that after k time-steps, we can reach anywhere in the span of the columns of B,AB, . . . ,Ak−1B. If
the span after a finite number of time steps, were equal to Rn, then we could say our system is controllable.
Intuitively, the span should grow as k increases but at what point would the span stop increasing?

3.1 Scalar Inputs
We will formalize the argument for scalar inputs and will make a remark at the end on how we can generalize
this to vector inpts. Suppose we had the discrete-time system

~x[n+1] = A~x[n]+~bu[n] (14)

Now suppose after k time steps, Span{~b,A~b, . . . ,Ak−1~b} has dimension k and adding Ak~b does not change
the span. This implies that Ak~b is linearly dependent to the first k vectors meaning we can write it as a linear
combination of the remaining vectors

Ak~b = α1~b+ . . .+αkAk−1~b (15)

Then we can also write Ak+1 as a linear combination of the first k vectors

Ak+1~b = A(c1~b+ . . .+ ckAk−1~b) = c1A~b+ . . .+ ckAk~b (16)

= α1~b+ . . .αkAk−1~b ∈ Span{~b,A~b, . . . ,Ak−1~b} (17)

If k < n, the argument above shows that our system will never reach every vector in Rn.

Therefore, to summarize our work, we define the controllability matrix

C =
[
~b A~b . . . An−1~b

]
(18)

We can say that if our controllability matrix has rank k < n, then our system is uncontrollable while if our
matrix is full rank, then our system is controllable.

3.2 Vector Inputs
The argument for vector inputs is slightly different, but the end result is the same. We can use the same
controllability matrix to determine whether our system is controllable.

C =
[
B AB . . . An−1B

]
(19)

However, to prove controllability for the multiple input case, we will have to invoke the Cayley-Hamilton
Theorem2 which states that a matrix satisfies its characteristic polynomial. What this means is if a matrix
A has the following characteristic polynomial,

λ
n +αn−1λ

n−1 + . . .+α1λ +α0 = 0 (20)

2The proof of this theorem is beyond the scope of this course. If you’re interested in learning more about this theorem, take
Math 110 or EE221A.
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then the following matrix equation must also be true.

An +αn−1An−1 + . . .+α1A+α0I = 0 (21)

In either case, this shows that we can write An as a linear combination of lower powers of A and we can
make the same argument that adding AnB to the controllability matrix will not change its rank.

3.3 Continuous-Time Controllability
So far, all of our analysis has been done for discrete-time systems. However, can we show whether a
Continuous-Time system is controllable? It turns out that as long as our state-vector is differentiable n
times, we can show that

d
dt
~x(t) = A~x(t)+B~u(t) (22)

d2

dt2~x(t) = A
d
dt
~x(t)+B

d~u(t)
dt

= A
(
A~x(t)+B~u(t)

)
+B

d~u(t)
dt

(23)

= A2~x(t)+AB~u(t)+B
d~u(t)

dt
(24)

... (25)

= An~x(t)+
n−1

∑
k=0

An−1−kB
dk~u(t)

dtk (26)

= An~x(t)+
[
B AB . . . An−1B

]
~u(t)

...
dn−1~u(t)

dtn−1

 (27)

Therefore, we can show that the controllability matrix is in fact the same for Continuous-Time systems.

C =
[
B AB . . . An−1B

]
(28)

4 Controllability Examples

4.1 Finding our Inputs
Consider the following discrete-time system with initial state~x[0] =

[
1 −2

]T
.

~x[n+1] =

[
1 1
0 2

]
~x[n]+

[
0
1

]
u[n] (29)

Then the controllability matrix can be computed as

C =
[
~b A~b

]
=

[
0 1
1 2

]
=⇒ RankC = 2 (30)
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Therefore our system is controllable and we can reach any state~x ∈R2 in two time steps. To figure out what
inputs u(0) and u(1) we must give to reach~x ∗, we can solve the following system of equations

~x[2] = A2~x[0]+
[
~b A~b

][u(0)
u(1)

]
=⇒

[
u(0)
u(1)

]
=

[
0 1
1 2

]−1
~x ∗−A2

[
1
−2

] (31)

4.2 Diagonal System
Suppose we have the following diagonal system

~x[n+1] =

[
λ1 0
0 λ2

]
~x[n]+

[
0
1

]
u[n] (32)

The controllability matrix can be computed as

C =
[
~b A~b

]
=

[
0 0
0 λ2

]
=⇒ RankC = 1 < 2 (33)

However, we could have also broken up the system into the two individual scalar equations

x1[n+1] = λ1x1[n]+0 ·u[n] (34)

x2[n+1] = λ2x2[n]+u[n] (35)

Note how u[n] cannot reach our first state x1. Therefore, the system must be uncontrollable.

4.3 Another Diagonal System
Now consider following diagonal system with λ 6= 0

~x[n+1] =

[
λ 0
0 λ

]
~x[n]+

[
1
1

]
u[n] (36)

The controllability matrix can be computed as

C =
[
~b A~b

]
=

[
1 λ

1 λ

]
=⇒ RankC = 1 < 2 (37)

Another way to see that this system is uncontrollable is to again break down the system into individual scalar
equations

x1[n+1] = λx1[n]+u[n] (38)

x2[n+1] = λx2[n]+u[n] (39)

Since the same input is influencing both systems simulatenously, the trajectory of the state ~x[n] will move
continue to move in a line.
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