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Fall 2020 UC Berkeley Note 15

1 Overview
In our journey of understanding how to analyze and control real world sytems, we first saw how to represent
a system in state-space representation. We then realized that many systems in the universe are non-linear,
but we can create a linear approximation around a small neighborhood around its equilibrium point. We also
saw that there were two types of systems: Continuous-Time Systems and Discrete-Time Systems. While
many systems are represented using continuous-time systems, in order to control our systems, we will need
a way to represent and understand this system in discrete-time. This is because computers run in discrete
time.

In this note, we will learn how to take a continuous-time system and feed in piecewise constant inputs to
create an equivalent discrete-time representation of the system. This process is called discretization and is
a key technique to understanding and building digital control systems.

2 Sampling
Before we dive into discretization, we first have to understand how to sample from a continuous-time sys-
tem. Given a continuous function x(t) that varies over time, one way to sample this function is to take a
measurement at time t every T seconds.

Ideally, we would like our samples to be equally spaced and from this discrete sequence of samples:
{x(0),x(T ),x(2T ), . . .} we could represent this sampled function in discrete time through the following
conversion

x[n] = x(nT ) (1)
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Now if we feed in a piecewise-constant input u(t) for into our system, we see that discretizing this input
gives the following intepretation:

With all of this in mind, we will now move onto discretizing our continuous time system.

3 Scalar Discretization
Suppose we had a system represented by the scalar differential equation

d
dt

x(t) = λ (x(t)−u(t)) (2)

If the input were constant, then recall that the solution to the differential equation is of the form

x(t) = Aeλ t +B (3)

To discretize a system, recall from the previous section that we feed in a piecewise constant input u(t). This
means that the input will remain constant over the region [nT,(n+1)T ).

Remembering that our goal is to come up with a discrete analog of the system,

x[n+1] = αx[n]+βu[n] (4)

let us take a look at a mathematical example of how this will work.

Suppose we have the a system represented by the scalar differential equation from (2). If we look at the
region for t ∈ [0,T ) the input u(t) = u[0]. Solving the differential equation for t ∈ [0,T ), it follows that

x(t) = x(0)eλ t +u[0](1− eλ t) (5)

Under the hood, the function x(t) is moving in the interval [0,T ). However, the discrete-time system only
sees a snapshot of what happens at t = 0 and t = T. Plugging in t = T into our solution above, we see that

x(T ) = x[1] = eλT x[0]+ (1− eλT )u[0] (6)
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Note how this resembles the equation x[1] = αx[0]+βu[0] for α = eλT and β = 1− eλT !

Figure 1: First step of discretization assuming λ < 0.

We will now generalize this for any n ∈ N.

If we look at the window for t ∈ [nT,nT +T ), the input remains constant at u(t) = u[n]. The initial condition
of the system is x(nT ) = x[n]. We could then solve the differential equation to get the following solution1

x(t) = e−λnT x[n]eλ t +(e−λnT )u[n]eλ t +u[n] (7)

Plugging in t = nT +T into our solution above, we see that

x(nT +T ) = x[n+1] = eλT x[n]+ (1− eλT )u[n] (8)

Which shows that our discretized system is indeed x[n+1] = αx[n]+βu[n] for α = eλT and β = 1− eλT !

We show another visualization below from n = 0 to n = 4

1Probably easiest to do through Guess and Check.
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4 Vector Discretization
We will now take everything we learned about discretizing a scalar system and apply it to the state-space
system represented by

d
dt
~x(t) = A~x(t)+B~u(t) (9)

Similar to how we solved our vector differential equations, we will assume A is diagonalizable and change
coordinates to the eigenbasis. This way we can discretize our individual scalar differential equations. Let V
be a matrix of the eigenvectors of A. Then defining the change of coordinates~z =V−1~x we see that

d
dt
~z(t) = Λ~z(t)+V−1B~u(t) (10)

A short derivation can show that the scalar differential equation

d
dt

x(t) = λx(t)+bu(t) (11)

can be discretized as the following system.2

x[n+1] = αx[n]+βu[n] (12)

where α = eλT and β = b eλT−1
λ

in the case λ = 0, we can show that β = bT. We will tackle this case in a
later section. In any case, given the vector differential equation in a diagonal basis, we can discretize each
scalar differential equation3

d
dt

z1(t) = λ1z1(t)+(V−1B~u)1(t)

...
d
dt

z1(t) = λ1z1(t)+(V−1B~u)n(t)

and it follows that

~z[n+1] =


eλ1T

. . .
eλnT

~z[n]+


eλ1T−1
λ1

. . .
eλnT−1

λn

V−1B~u[n] (13)

After converting our coordinates back to the standard basis our discretized system is

~x[n+1] = Ad~x[n]+Bd~u[n] (14)

where

Ad =V


eλ1T

. . .
eλnT

V−1 Bd =V


eλ1T−1

λ1
. . .

eλnT−1
λn

V−1B (15)

2In the previous section, b =−λ
3the notation (V−1B~u)i stands for the ith entry of the vector V−1B~u
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5 Examples
We’ll now take a look at a couple of physical examples of discretization. We’ll also take a look at an example
where λ = 0.

5.1 Circuit Example
Recall the LC Tank from the Circuits Module where L = 10nH and C = 10pF.

L

iL

C

+

−

vout

ic

The differential equation representing this system was

d
dt

[
vout

iL

]
=

[
0 − 1

C
1
L 0

][
vout

iL

]
(16)

Finding the eigenvectors and eigenvalues of this system, we put change coordinates into a diagonal system.

d
dt

[
ṽout

ĩL

]
=

[
j 1√

LC
0

0 − j 1√
LC

][
ṽout

ĩL

]
, V =

 j
√

L
C − j

√
L
C

1 1

 (17)

There is no input into this system, but we can still discretize it as[
ṽout [n+1]
ĩL[n+1]

]
=

e j 1√
LC

T 0

0 e− j 1√
LC

T

[ṽout [n]
ĩL[n]

]
(18)

Changing coordinates back to the standard-basis, it follows that[
vout [n+1]
iL[n+1]

]
=

[
10
√

10 j −10
√

10 j
1 1

]e j 1√
LC

T 0

0 e− j 1√
LC

T

[10
√

10 j −10
√

10 j
1 1

]−1[
vout [n]
iL[n]

]
(19)

Simplifying our expression, we see that[
vout [n+1]
iL[n+1]

]
=

[
cos(ωT ) −10

√
10sin(ωT )

1
10
√

10
sin(ωT ) cos(ωT )

][
vout [n]
iL[n]

]
(20)

for ω = 1√
LC
. Try plotting this result on a computer and observe how the sampling rate T affects your

discretization.
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5.2 Car Example
Consider a car with mass M that is pushed by an input force u(t).

We can represent the system by using the states p(t) and v(t) representing the position and velocity of the
car.

d
dt

[
p(t)
v(t)

]
=

[
0 1
0 0

][
p(t)
v(t)

]
+

[
0
1
M

]
(21)

While the matrix A representing the system is non-diagonalizable, we can take the same approach as we did
when solving vector differential equations and break up the system into two differential equations

d
dt

p(t) = v(t)
d
dt

v(t) =
u(t)
M

(22)

Since p(t) depends on v(t), we will solve for v(t) first. Note how λ = 0 in this case. Since u(t) is constant
in the interval [nT,nT +T ), we use the Fundamental Theorem of Calculus 4

∫ t

nT
dv =

∫ t

nT

u[n]
M

dτ (23)

v(t)− v(nT ) =
u[n]
M
· (t−nT ) =⇒ v[n+1] = v[n]+

T
M

u[n] (24)

Now that we’ve discretized v(t), we can plug our solution back into the differential equation for p(t).∫ t

nT
d p =

∫ t

nT

(
v[n]+

u[n]
M

(τ−nT )
)

dτ (25)

p((n+1)T )− p(nT ) = v[n] · (t−nT )+
u[n]
2M

(t2− (nT )2)−nT (t−nT ) (26)

=⇒ p[n+1] = p[n]+ v[n] ·T +
T 2

2M
u[n] (27)

To summarize, we aggregate our results into discrete-time vector system:[
p[n+1]
v[n+1]

]
=

[
1 T
0 1

][
p[n]
v[n]

]
+

[
T 2

2M
T
M

]
(28)

4Alternatively we can guess and check v(t) = At +B.
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6 Controlling a System
Now that we’ve taken a look at a couple of examples of discretization, let’s see how we can control our
systems using our input u[n]. Recall from the previous sections on discretization that the following system

d
dt

x(t) = λ (x(t)−u(t)) (29)

can be discretized by feeding in a piecewise-constant input and sampling at some rate T

x[n+1] = eλT x[n]+ (1− eλT )u[n] (30)

We show the visualization from before on how if λ < 0, the system moves toward the input.

Recall from the note on Time Constants that if λ < 0, our solution will converge to a steady state. For this
specific differential equation, the steady state will be u(t) and the time constant is τ =

∣∣∣ 1
λ

∣∣∣ .
Therefore, if T ≈ 5τ, our response x(t) at time t = nT +T will be within 1% of our control input u[n]! A
further analysis of our discretized equation verifies that x[n+1]≈ u[n] if λ is very large and negative.

x[n+1] = eλT x[n]+ (1− eλT )u[n] (31)

As a result, if we wanted to move to a new state at time n+ 1, all we would have to do is feed in u[n] =
xd [n+1] where the subscript d stands for “desired.”

If our system was instead represented by the differential equation

d
dt

x(t) = λx(t)+bu(t) (32)

we can always scale our input u[n] =−λ

b xd [n+1]. The discretized system will be

x[n+1] = eλT x[n]+b
eλT −1

λ
u[n] =⇒ xss[n+1] =− b

λ
u[n] = xd [n+1] (33)

following our desired behavior of the state tracking the input.
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7 Digital Control Systems
In a typical application, the control algorithm for a continuous-time physical system is executed in discrete-
time. Thus, the measured output must be sampled before being fed to the control algorithm.

The discrete-time control input generated by the algorithm must be interpolated into a continuous-time
function, typically with a zero order hold, before being applied back to the system.

u[0]

u[1]

u[2]

u[3]
u[4]

The visual below depicts the full digital control system. The discretization process is shown in the box
outlined in yellow.

zero order
hold

C.T. System
d
dt~x(t) = A~x+B~u

sampling

Digital Controller

~u[n] = K~x[n]+~w[n]

~u[n] ~x[n] =~x(nT )u(t) ~x(t)

In the previous note, we looked at the Digital Controller section and came up with a state-feedback law to
stabilize the system.

Contributors:
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