
Note 16 @ 2020-10-30 17:59:40-07:00

EECS 16B Designing Information Devices and Systems II
Fall 2020 UC Berkeley Note 16

1 Module Overview
Now that we have grapsed a good understanding of dynamical systems and how to control them, we will be
moving onto a new module. In the next set of notes, we will be focusing on Linear Algebra and how we can
set up optimization problems to better learn and control our systems.

The subject of mathematical optimization is ubiquitous in many fields of study even outside Electrical En-
gineering or Control Systems. A common theme throughout this module will be to minimize some cost
function inherent to our problem subject to a series of constraints.

The first problem that we will discuss is how to identify an unknown system through Least-Squares. This is
formally referred to as System Identification.

2 Least-Squares
Let us recap the Least-Squares problem from 16A. Given a set of observations yi|mi=1, we would like to
explain our observations using a set of features xk|nk=1.

The heart of Least-Squares assumes that this relation between y and xi is linear meaning

yi = α1xi1 +α2xi2 + . . .+αinxin + ei (1)

where ei is a term accounting for the noise in our measurements of yi.

We can set up a matrix vector equation by aggregating our features into a matrix A

~y =


y1
y2
...

ym

=


x11 x12 . . . x1n

x21 x22
. . . x2n

...
...

. . .
...

xmn xm2 . . . xmn




α1
α2
...

αn

+


e1
e2
...

en

= A~x+~e (2)

An alternate way to phrase the least-squares problem as an optimization problem is as follows

min
~x∈Rn
‖~e‖ subject to ~e = A~x−~y (3)

This gives the perspective that Least-Squares is searching for~x that minimizes the error~e between~y and A~x.
We won’t derive the solution here, but remember from 16A/Math 54 that the solution to this problem is

~x ∗ = (AT A)−1AT~y (4)

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 1



Note 16 @ 2020-10-30 17:59:40-07:00

3 Scalar Systems
Now that we have gone over the Least-Squares problem, let’s try to understand how we can use it to identify
an unknown scalar system.

3.1 Simple Linear Model
Suppose we had an unknown linear system treated as a black-box model where we can give inputs and
observe outputs but the parameters a and b are unknown.

Unknown System

x[t +1] = ax[t]+bu[t]+w[t]

u[t]

Input

x[t +1]

Observation

In order to estimate the parameters a and b we can observe the intial state x[0], give a sequence of inputs,
and observe the following outputs[

u[0] u[1] . . . u[k]
]
=⇒

[
x[1] x[2] . . . x[k+1]

]
Using this information, we have a collection of k equations that we can aggregate into a matrix-vector
equation

~y =


x[1]
x[2]

...
x[k+1]

=


x[0] u[0]
x[1] u[1]

...
...

x[k] u[k]


[

a
b

]
+


w[0]
w[1]

...
w[t]

= D~p+~e (5)

The vector~y holds the observations, the matrix D represents our data, ~p holds our parameters and~e accounts
for the error in our measurements. Since this is a Least-Squares problem, we can best estimate ~p as

~p ∗ = (DT D)−1DT~y (6)

Recall that in order for there to be a unique solution, the matrix D must be full rank or have linearly inde-
pendent columns. We will revisit this at the end of the note.

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 2



Note 16 @ 2020-10-30 17:59:40-07:00

3.2 “Nonlinear” Models
Now suppose we had more information about the system and knew that it can be represented as

x[t +1] = a0x[t]+a1ex[t]+b0u[t]+b1u[t]2 +w[t] (7)

Although this system is “nonlinear,” it is still linear with respect to its features so we can still use Least-
Squares to estimate its parameters

~y =


x[1]
x[2]

...
x[k+1]

=


x[0] ex[0] u[0] u[0]2

x[1] ex[1] u[1] u[1]2
...

...
...

...
x[k] ex[k] u[k] u[k]2




a0
a1
b0
b1

+


w[0]
w[1]

...
w[t]

= D~p+~e (8)

Again the least squares solution should be identical.

~p ∗ = (DT D)−1DT~y

4 Vector Systems
The procedure of performing System Identification of a vector system that evolves over time is near identical.

Suppose we had the following discrete-time system with A ∈ R2×2, B ∈ R2×2, and error ~w ∈ R2.

~x[t +1] = A~x[t]+B~u[t]+~w[t] (9)

Given a set of inputs (~u[0], . . . ,~u[k]), let’s try writing out the system of equations.

x1[1] = a11x1[0]+a12x2[0]+b11u1[0]+b12u2[0]+w1[0]

x2[1] = a21x1[0]+a22x2[0]+b21u1[0]+b22u2[0]+w2[0]
...

x1[k+1] = a11x1[k]+a12x2[k]+b11u1[k]+b12u2[k]+w1[k]

x2[k+1] = a21x1[k]+a22x2[k]+b21u1[k]+b22u2[k]+w2[k]

This can be aggregated into the following matrix-vector equation


x1[0] x2[0] 0 0 u1[0] u2[0] 0 0

0 0 x1[0] x2[0] 0 0 u1[0] u2[0]
...

...
...

...
...

...
...

...
x1[k] x2[k] 0 0 u1[k] u2[k] 0 0

0 0 x1[k] x2[k] 0 0 u1[k] u2[k]


︸ ︷︷ ︸

D



a11
a12
a21
a22
b11
b12
b21
b22


︸ ︷︷ ︸

~p

=


x1[1]
x2[1]

...
x1[k+1]
x2[k+1]


︸ ︷︷ ︸

~y

+


w1[0]
w2[0]

...
w1[k]
w2[k]


︸ ︷︷ ︸

~e

(10)

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 3



Note 16 @ 2020-10-30 17:59:40-07:00

We can swap the rows and columns to rewrite this as two problems.
x1[0] x2[1] u1[0] u2[0]
x1[1] x2[1] u1[1] u2[1]

...
...

...
...

x1[k] x2[k] u1[k] u2[k]


︸ ︷︷ ︸

D


a11
a12
b11
b12


︸ ︷︷ ︸

~p1

=


x1[1]
x1[2]

...
x1[k+1]


︸ ︷︷ ︸

~y1

+


w1[0]
w1[1]

...
w1[k]


︸ ︷︷ ︸

~w1
x1[0] x2[1] u1[0] u2[0]
x1[1] x2[1] u1[1] u2[1]

...
...

...
...

x1[k] x2[k] u1[k] u2[k]


︸ ︷︷ ︸

D


a21
a22
b21
b22


︸ ︷︷ ︸

~p2

=


x2[1]
x2[2]

...
x2[k+1]


︸ ︷︷ ︸

~y2

+


w2[0]
w2[1]

...
w2[k]


︸ ︷︷ ︸

~w2

Finally, we can combine the two equations back into one matrix-matrix equation.
x1[0] x2[1] u1[0] u2[0]
x1[1] x2[1] u1[1] u2[1]

...
...

...
...

x1[k] x2[k] u1[k] u2[k]


︸ ︷︷ ︸

D


a11 a21
a12 a22
b11 b21
b12 b22


︸ ︷︷ ︸

P

=


x1[1] x2[1]
x1[2] x2[2]

...
x1[k+1] x2[k+1]


︸ ︷︷ ︸

Y

+


w1[0] w2[0]
w1[1] w2[1]

...
w1[k] w2[k]


︸ ︷︷ ︸

W

(11)

This matrix Least-Squares problem will have a similar solution of the form

P ∗ = (DT D)−1DTY (12)

4.1 Dimensional Analysis
Suppose we had the following discrete-time system where A ∈ Rn×n,B ∈ Rn×d , and ~w ∈ Rn.

~x[t +1] = A~x[t]+B~u[t]+~w[t] (13)

This would imply that the total number of unknowns in our system is n2 + nd meaning our P matrix will
have n2 +nd entries. At each time-step k, we give d inputs and observe n outputs[

u1[k] u2[k] . . . ud [k]
]
=⇒

[
x1[k+1] x2[k+1] . . . xn[k+1]

]
(14)

This gives us a total of n observations at each time-step. Recall that if we have m unknowns in our system,
we need at least m equations in order to be able to solve for a unique solution. Therefore, from this analysis,
we see that this state-space system will require at least n+ d time-steps of observations in order to fully
estimate the A and B matrices.

It is also important to note that how we setup the data matrix has a large impact on the computational
runtime. If we were to set up the System-ID problem the way we did in (10) then the matrix D will be very
large with size (kn)× (n2 +nd). On the other hand, if we set up D in a more compact form as seen in (11),
D will be of size (kn)× (n+d). We will see in a later note on how we can approximate this data matrix and
solve least-squares more efficiently.

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 4



Note 16 @ 2020-10-30 17:59:40-07:00

5 Data Matrix
Whenever we peform Least-Squares, the data matrix D must have linearly independent columns in order to
have a unique solution. If D is not a matrix of full-rank, then the matrix DT D will be non-invertible.

5.1 Quick Lemma
To show this, we can show that the two subspaces of a matrix A, Nul(A) = Nul(AT A) are equivalent. This
can be done by showing that the two sets are subsets of each other.

Suppose~x ∈ Nul(A). Then A~x =~0. Left multiplying by AT , it follows that

AT A~x = AT~0 =~0 =⇒ ~x ∈ Nul(AT A) (15)

Now suppose~x ∈ Nul(AT A). Then AT A~x =~0. Left multiplying by~xT , it follows that

~xT AT A~x =‖A~x‖2 =~0 =⇒ A~x =~0 =⇒ ~x ∈ Nul(A) (16)

Therefore, since the two sets are subsets of each other, we conclude that Nul(A) = Nul(AT A).

5.2 Rank-Nullity Theorem
So how does this fact help us understand that when DT D is invertible? It turns out that the Rank-Nullity
Theorem holds this answer. If D is an m×n matrix, then DT D is an n×n matrix.

The Rank-Nullity Theorem states that for an m×n matrix A,

Rank(A)+dim Nul(A) = n (17)

Therefore, we can show that since Nul(A) = Nul(AT A), Rank(A) = Rank(AT A). For DT D to be invertible,
it must be of rank n and it follows that D is equivalently of rank n.

Contributors:

• Taejin Hwang.

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 5


	Module Overview
	Least-Squares
	Scalar Systems
	Simple Linear Model
	``Nonlinear'' Models

	Vector Systems
	Dimensional Analysis

	Data Matrix
	Quick Lemma
	Rank-Nullity Theorem


