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1 Overview
In this note, we will be taking a look the Singular Value Decomposition or SVD. It is an extremely useful
tool that is used in many fields such as Statistics, Image Processing, Machine Learning, and even in Control
Systems and is hence referred to as the “Swiss Army Knife” of Linear Algebra.

The SVD lets us write out a matrix A as a weighted sum of rank 1 matrices sometimes referred to as
features. The weight on each feature signifies its importance and when writing out the SVD, we order them
from largest to smallest. Intuitively features with larger weights are more important and the SVD can be
used to approximate a matrix A by truncating “less important” features.

In order to build the SVD, we will use the results from the Spectral Theorem and use the eigenvectors of
the symmetric matrix AT A. In addition, the basis vectors that come out of the SVD will be orthonormal
by construction. From a geometric perspective, these orthonormal transformations can be thought of as
rotations since an orthonormal matrix U does not change the norm of a vector~x.

2 Singular Value Decomposition
There are multiple ways to define the Singular Value Decomposition of a matrix. We can write out the SVD
in its compact form as a sum of rank-1 matrices or we can write out the full SVD as a series of matrix
multiplications.

The compact SVD of an m×n matrix A of rank k is

A = σ1~u1~vT
1 + . . .+σk~uk~vT

k =
k

∑
i=1

σi~ui~vT
i (1)

The vectors~ui are orthonormal and are called the left singular vectors. The vectors~vi are also orthonormal
and are the right singular vectors. The scalars σi are the singular values of A. For values of i > k, σi = 0.

Alternatively, the full SVD of an m×n matrix A with rank k is

A =UΣV T (2)

U =

 | |
~u1 . . . ~um

| |

 Σ =


σ1

. . .
σn

0

 V =

 | |
~v1 . . . ~vn

| |

 (3)

Note that Σ is an m×n matrix whose shape will change based on the shape of A.
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A is a tall matrix m > n
σ1

. . .
σn

0



A is a wide matrix n > m

Σ =


σ1

. . . 0
σm



2.1 Understanding the SVD
The matrix A is a linear transformation that sends vectors in Rn to Rm. Therefore, the right singular vectors
{~v1, . . . ,~vn} form a basis for Rn while the left singular vectors {~u1, . . . ,~um} form a basis for Rm.

In addition to this, the choices of~vi and~ui are special in that

A~vi = σi~ui (4)

We will now prove the existence of the SVD and its connection to the eigenvectors of the matrix AT A.

2.1.1 Positive Definiteness

The Spectral Theorem tells us that the symmetric matrix AT A has a set of orthonormal eigenvectors {~v1, . . . ,~vn} .
We can show that the eigenvalues of AT A are all greater than or equal to 0.

‖A~v‖2 = 〈A~v,A~v〉=~vT AT A~v = λ~vT~v = λ‖~v‖2 =⇒ λ =
‖A~v‖2

‖~v‖2 ≥ 0 (5)

The last inequality follows from the positive-definiteness of inner products and norms.

2.1.2 Eigenspaces

Now we show the relation between the eigenvectors of AT A and AAT . If ~v is an eigenvector of AT A with
nonzero eigenvalue, then the vector ~w = A~v must be an eigenvector of AAT .

AT A~v = λ~v =⇒ A(AT A~v) = A(λ~v) =⇒ AAT (A~v) = λ (A~v) (6)

If~v were an eigenvector of zero eigenvalue, then~v is in the null-space of A since Nul(A) = Nul(AT A).

Now recalling our results from the last section, let’s compute the norm of the vector ~w = A~v

‖~w‖=‖A~v‖=
√

λ‖~v‖ (7)

This means if we were to normalize ~w as a unit vector~u, it would follow that

~u =
~w
‖~w‖

=
A~v√

λ
=⇒ A~v =

√
λ~u (8)

As a result, we define σ =
√

λ and call a singular value of A.
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2.1.3 Summary

If A is an m× n matrix of rank k, then AT A will have k orthonormal eigenvectors {~v1, . . . ,~vk} . For each of
these k eigenvectors, there exist orthonormal eiegenvectors {~u1, . . . ,~uk} of AAT .

As a result, for i = 1, . . . ,k we can say that
A~vi = σi~ui (9)

the remaining vectors {~vk+1, . . . ,~vn} form the Nul(A) and correspond to singular values σi = 0. The vectors
{~uk+1, . . . ,~um} form the Nul(AT ) can also be picked through Gram-Schmidt process.

2.2 SVD From the Other Side
While we have defined the left-singular vectors ~u from the right-singular vectors~v, we could have done the
entire process from the other side. This perspective will be very useful when computing the SVD.

Starting with an eigenvector~u of AAT , we can show that ~w = AT~u is an eigenvector of AT A.

AAT~u = λ~u =⇒ AT (AAT~u) = AT (λ~u) =⇒ AT A(AT~u) = λ (AT~u) (10)

The norm of‖~w‖=
√

λ = σ and we can again define a relation between~u and~v.

~v =
~w
‖~w‖

=
AT~u
σ

=⇒ AT~u = σ~v (11)

3 Computing the SVD
We will show two examples of computing the SVD for tall and wide matrices but note that in practice, we
will always compute the SVD of large matrices using numerical tools.

SVD of a Tall Matrix

Let’s first look at a 3×2 matrix A and compute its SVD

A =

1 −1
0 1
1 0


Step 1: Compute the symmetric matrix AT A

AT A =

[
2 −1
−1 2

]

Step 2: Find orthonormal eigenpairs (λi,~vi) of AT A for i = 1, . . . ,k and order them from largest to smallest

λ
2−4λ +3 = 0 =⇒ λ1 = 3,λ2 = 1

~v1 =

[
1√
2

− 1√
2

]
~v2 =

[
1√
2

1√
2

]
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Step 3: Compute the singular values σi =
√

λi

σ1 =
√

3 σ2 =
√

1

Step 4: Compute the right singular vectors~ui =
A~vi
σi

for i = 1, . . . ,k.

~u1 =
1√
3

1 −1
0 1
1 0

[
1√
2

− 1√
2

]
=


√

6/3
− 1√

6
1√
6

 ~u2 =
1
1

1 −1
0 1
1 0

[
1√
2

1√
2

]
=

 0
1√
2

1√
2


Step 5: Complete the bases U and V through Gram-Schmidt or by computing the appropriate null spaces.

Since Rank(A) = 2 we don’t need to add any move vectors to V. However, we will need to add a third vector
to U. We can find~u3 by finding a basis for Nul(AT ).

~u3 =


− 1√

3
− 1√

3
1√
3


To summarize, the SVD of the matrix A can be written as

A =UΣV T =


√

6
3 0 − 1√

3
− 1√

6
1√
2
− 1√

3
1√
6

1√
2

1√
3



√

3 0
0 1
0 0

[
1√
2
− 1√

2
1√
2

1√
2

]

SVD of a Wide Matrix

Now let us look at a 2×3 matrix A and compute its SVD

A =

[
1 1 0
0 1 1

]

Step 1: Compute the symmetric matrix AAT 1

AAT =

[
2 1
1 2

]

Step 2: Find orthonormal eigenpairs (λi,~ui) of AAT for i = 1, . . . ,k and order them from largest to smallest

λ
2−4λ +3 = 0 =⇒ λ1 = 3,λ2 = 1

~u1 =

[
1√
2

1√
2

]
~u2 =

[
− 1√

2
1√
2

]

1We compute AAT instead of AT A since it is a smaller, 2×2 matrix. In general, it will be easier to diagonalize a smaller matrix
so we pick AT A for tall matrices and AAT for wide matrices
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Step 3: Compute the singular values σi =
√

λi

σ1 =
√

3 σ2 =
√

1

Step 4: Compute the left singular vectors~vi =
AT~ui

σi
for i = 1, . . . ,k.

~v1 =
1√
3

1 0
1 1
0 1

[
1√
2

1√
2

]
=


1√
6√
6

3
1√
6

 ~v2 =
1
1

1 0
1 1
0 1

[
− 1√

2
1√
2

]
=

−
1√
2

0
1√
2


Step 5: Complete the bases U and V through Gram-Schmidt or by computing the appropriate null spaces.
Since Rank(A) = 2 we don’t need to add any move vectors to U. However, we will need to add a third vector
to V. We can find~v3 by finding a basis for Nul(A).

~v3 =


1√
3

− 1√
3

1√
3


To summarize, the SVD of the matrix A can be written as

A =

[
1√
2
− 1√

2
1√
2

1√
2

][√
3 0 0

0 1 0

]
1√
6

√
6

3
1√
6

− 1√
2

0 1√
2

1√
3
− 1√

3
1√
3



4 Fundamental Theorem of Linear Algebra
The results from the SVD can be summarized by the Fundamental Theorem of Linear Algebra which
states that for an m×n matrix A

Col(A)⊥ Nul(AT ) (12)

Nul(A)⊥ Col(AT ) (13)

In otherwords, the Col(A) is orthogonal to the Nul(AT ) and the Nul(A) is orthogonal to the Col(AT ).

4.1 Proof
4.1.1 Basis for Col(AT )

If A is of rank k, then the first k right-singular vectors {~v1, . . . ,~vk} form a basis for the Col(AT ). To see this,
recall that the right-singular vectors are eigenvectors of AT A.

AT (A~vi) = λ~vi =⇒ ~vi ∈ Col(AT ) (14)

Since Rank(A) = Rank(AT ) = k and {~v1, . . . ,~vk} are all in Col(AT ), they must form a basis.
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4.1.2 Dimension of Nul(A)

By the Rank-Nullity Theorem,
Rank(A)+dim Nul(A) = n (15)

Since Rank(A) = k, it follows that dim Nul(A) = n− k.

4.1.3 Basis for Nul(A)

The last n− k right-singular vectors {~vk+1, . . . ,~vn} are all eigenvectors of eigenvalue 0. Hence, they form a
basis for Nul(AT A). Since, Nul(AT A) = Nul(A), we can say that {~vk+1, . . . ,~vn} forms a basis for Nul(A).

4.1.4 Orthogonality

From the Spectral Theorem, we can pick an orthonormal set of eigenvectors for the matrix AT A. Therefore,
since all of the vectors {~v1, . . . ,~vn} are orthonormal, the individual bases for Col(AT ) and Nul(A) must also
be orthogonal. Since the bases for two vector spaces are orthogonal, we conclude by saying every vector in
Col(AT ) must be orthogonal to Nul(A).

We can use a similar argument using the eigenvectors of AAT to show that Col(A)⊥ Nul(AT ).

5 Conclusion
In this note, we developed the Singular Value Decomposition of a matrix A through the orthonormal eigenspaces
of the matrices AT A and AAT . The two different forms we define for the SVD were:

• Compact SVD:

A =
k

∑
i=1

σi~ui~vT
i = σ1~u1~vT

1 + . . .+σk~uk~vT
k

• Full SVD:

A =
n

∑
i=1

σi~ui~vT
i =

 | |
~u1 . . . ~um

| |




σ1
. . .

σn

0


 | |
~v1 . . . ~vn

| |


T

The left and right singular vectors of the U and V matrices are orthonormal and the singular values σi are
ordered from largest to smallest. The first k left-singular vectors {~u1, . . . ,~uk} span the Col(A) while the last
n− k right-singular vectors {~vk+1, . . . ,~vn} span the Nul(A).

In the next note, we will focus on applications of the Singular Value Decomposition and take a look at the
geometric interpretation by viewing the U and V matrices as orthonormal rotations.
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