
Note 19 @ 2020-10-31 15:11:42-07:00

EECS 16B Designing Information Devices and Systems II
Fall 2020 UC Berkeley Note 19

1 Overview
In the previous note, we developed the Singular Value Decomposition of a matrix A. We saw that it was
possible to take any matrix A and write it in its compact form as a sum of rank 1 matrices. Alternatively we
could write the SVD of A in its full form as product of three matrices U,Σ,V T . We keep both of these forms
in mind as each form will have its own useful application.

Moving onto the focus of this note, we will first look at the compact form and how the SVD can be used
to compress images. Then we will look at the full SVD through a geometric interpretation and develop a
concept called the pseudoinverse of a matrix. The pseudoinverse possess a special minimum norm property
and we will see how it can be used to control a system with “minimum energy.”

2 Truncated SVD
The compact SVD of a matrix is a sum of k rank 1 matrices.

A = σ1~u1~vT
1 + . . .+σk~uk~vT

k (1)

Each term ~ui~vT
i is a matrix with rank 1 and is referred to as an outer-product. More importantly, each of

these rank 1 matrices are weighted by σi which are ordered from largest to smallest.

This means we can give a rank r < k approximation of the matrix A by “truncating” all terms past r.

A≈ σ1~u1~vT
1 + . . .+σr~ur~vT

r (2)

To demonstrate why this truncation is helpful let us think about the minimum number of entries required
to express this matrix. If we were to look at an arbitrary m× n matrix A, one way to represent this matrix
would be through its mn individual elements.

The SVD however, lets us compress this matrix by keeping the most important directions. To represent the
same matrix A, we can keep track of three quantities: σi,~ui,~vi. For each rank, this would incur a total of
m+ n+ 1 entries meaning a rank r SVD approximation can be represented using around (m+ n+ 1)× r
entries. This will result in a significant amount of compression if r�min(m,n).

3 Image Compression
Using the truncated SVD defined in the previous section, let’s try using it to compress an image. An image
can be numerically expressed as a matrix whose entries represent the color of a specific pixel.

We will start off simple and take a look at a 720×720 grayscale image of a flower. This image is represented
as a 720×720 matrix with values ranging between 0 and 255.
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We can use the truncated SVD to create a rank r approximation of the original image. For each image, we

also keep track of the compression ratio which we define as C =
(m+n+1) · r

m ·n
.
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At around r = 100, we can notice that the compressed image looks near identical to the original image. To
provide a more technical analysis, let’s take a look at a plot of the singular values of the matrix.

Remember that the singular values σi are ordered from largest to smallest. The plot shows the magnitude of
σi on the y-axis and the index i on the x-axis. Upon analyzing the plot, we can notice that the values of σi

drop off rather quickly and are near zero when r = 100.

The compression error can be defined as ε = A−Ar where Ar is a rank r approximation of the original image
A. From the SVD, we can see that the matrix ε is

ε = A−Ar =
n

∑
i=r+1

σi~ui~vT
i

Since the σi are near zero, the ε will be close to zero as well.

3.1 Color Images
Now let’s look at an example of a 2800×2800 color image. This image follows the RGB color scheme so
the setup will be near identical except we will have a separate matrix for each color.

We can use the SVD to compress each of the red, green, and blue matrices separately and reconstruct the
image by concatenating the three matrices. We will also keep track of the image compression ratio as defined
in the previous section.
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By r = 50 the reconstructed image looks near identical to the original and the compression is all the way
down to around 3.5%. We plot the singular values of the matrix once more to illustrate this effect.
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4 Pseudoinverse of a Matrix
In this section, we will take a look at the geometric interpretation of the SVD and how it can be used to solve
a system of equations. The SVD naturally gives rise to a pseudoinverse of a matrix A.

Given a system of equations A~x =~y, we have developed multiple ways to solve this problem

• If A is square and invertible, we can solve~x = A−1~y

• If A is tall and full rank, we can use Least-Squares to say~x∗ = (AT A)−1AT~y.

• If A is wide and has a spare solution, we can use Orthogonal Matching Pursuit to estimate~x.

We will now develop a solution for A~x =~y making no assumptions about the sparsity of the solution. Similar
to how we performed matrix inversion, we will define a matrix A† called the pseudoinverse.

4.1 SVD as Rotations
To derive the pseudoinverse, we will decompose the matrix A into a series of rotations and scaling. Since U
and V are orthonormal matrices, they do not change the norm of a vector and will only rotate it.

~y = A~x =UΣV T~x A sends~x ∈ Rn to~y ∈ Rm.

~z =V T~x V T rotates the vector~x to a new vector~z.

~w = Σ~z Σ scales~z and sends it to a vector ~w ∈ Rm.

~y =U~w U rotates the vector ~w to a new vector~y.

A

Σ

V T U

σ1
σ2

σ1

σ2

4.2 Undoing the Matrices
In order to undo the effect of the matrix A, the plan is to undo each rotation and scaling one by one.

~y = A~x =UΣV T~x A sends~x ∈ Rn to~y ∈ Rm.

UT~y = ΣV T~x Undoing the rotation U.

Σ
†UT~y =V T~x “Unscaling” the matrix Σ.

~x =V Σ
†UT~y Undoing the rotation V T
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The matrices U and V T are invertible but the matrix Σ is not even square.

Σ =


σ1

. . . 0
σm


If Σ~z = ~w, the best we can do is divide by the singular values where division is possible. Therefore, if A is a
wide matrix of rank k, we can undo σi for i = 1, . . . ,k.

σizi = wi =⇒ zi =
wi

σi

For the remaining singular values i > k+1, we will fill in the matrix with zeros. As a result, we define Σ†

as the following

Σ
† =



1
σ1

0 . . . 0
...

. . . . . . 0

0 . . . 1
σk

...
0 0 . . . 0
...

...
...

...
0 0 . . . 0


(3)

To summarize, the pseudoinverse of a matrix A can be written as

A† =V Σ
†UT (4)

4.3 Matrix Form of the Compact SVD
Sometimes, we like to write out the compact SVD in its matrix form noting that σi = 0 for i > k

A =UcΣcV T
c =

k

∑
i=1

σi~ui~vT
i (5)

Uc =
[
~u1 . . . ~uk

]
Σc =


σ1

. . .
σk

 Vc =
[
~v1 . . . ~vk

]
(6)

Here Σc is a k× k diagonal matrix with the singular values on its diagonal.

In fact, we can write the pseudoinverse of a matrix A† using the compact SVD.

A† =VcΣ
−1
c UT

c (7)
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4.4 Minimum Norm Property
If A is an m× n matrix that that is wide (n > m) with full row-rank, the system of equations A~x =~y has
infinite solutions. We claim the pseudoinverse gives the solution with minimum norm

~x = A†~y =VcΣ
−1
c UT

c ~y (8)

As an optimization problem, we can phrase this as the following1

min
~x∈Rn
‖~x‖2 subject to A~x =~y (9)

We will now prove that the pseudoinverse gives the solution to this optimization problem.

4.5 Proof:
The compact SVD helps us understand the matrix A in terms of its fundamental subspaces. We can write
out the matrix A in terms of its SVD but also break it down into its compact and null-space terms.

A =UΣV T =
[
Uc

][
Σc 0

][V T
c

V T
n

]
=UcΣcV T

c (10)

Here U =Uc since the matrix A has rank m.

The constraint of our optimization problem can we rewritten by expanding out the compact SVD of A.

A~x =~y =⇒ UcΣcV T
c ~x =~y (11)

4.5.1 Change of Coordinates

The vectors of the V matrix form an orthonormal basis for Rn. Recall that the last k columns of V form a
basis for Nul(A). Now let~z be the coordinates of~x using the basis V. We can break up these coordinates into
two components:~zc representing the first k coordinates and~zn representing the last n− k.

~x =V~z =
[
Vc Vn

][~zc

~zn

]
=Vc~zc +Vn~zn (12)

Plugging our coordinate representation~z, we see that

A~x =UcΣcV T
c ~x =UcΣcV T

c Vc~zc +UcΣcV T
c Vn~zn =UcΣc~zc =~y (13)

The last equality comes from the fact that the columns Vc are orthonormal to Vn.

The objective‖~x‖2 can be rewritten as follows using the coordinates~z.

‖~x‖2 =‖Vc~zc +Vn~zn‖2 =‖~zc‖2 +‖~zn‖2 (14)

Since the constraint A~x =~y does not depend on~zn, we can pick~zn =~0. The optimization problem can then

1Minimizing the norm of~z is equivalent to minimizing the squared norm since norms are positive definite and f (x) = x2 is a
monotonic transform.
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be rewritten as
min
~zc∈Rk

‖~zc‖2 subject to UcΣc~zc =~y (15)

Since Uc and Σc are invertible matrices, there must be a unique solution~zc = Σ−1
c UT

c ~y. Lastly, converting
back to standard basis coordinates, it follows that

~x =V~z =
[
Vc Vn

][
Σ−1

c UT
c ~y

0

]
=VcΣ

−1
c UT

c ~y = A†~y (16)

5 Optimal Control
Now that we have equipped ourselves with the pseudoinverse and have proved its minimum norm property,
let us take a look at an application to control systems. Suppose we have a discrete-time system with the
following dynamics

~x[t +1] = A~x[t]+B~u[t]

Let us assume that this system is controllable meaning we can reach any target state~t ∈ Rn in at most n
time-steps. While it may be desirable to reach our target~t as quickly as possible, we may be limited by the
physical constraints of the system which prevents high valued inputs.

Therefore, we can try to increase the number of time-steps in order to relax our system’s constraints. We
will be using the squared norm as a measure of the amount of “energy” it takes to move our system to a
target state. By relxaing our system to reach our target in m > n states, we can write out~x[m] as

~x[m] = An~x[0]+Am−1B~u[0]+An−2B~u[1]+ . . .+AB~u[m−2]+B~u[m−1] (17)

= An~x[0]+
[
B AB · · · Am−1B

]

~u[m−1]
~u[m−2]

...
~u[0]

 (18)

= An~x[0]+H~w (19)

Reaching~t in m time-steps with minimum energy can be phrased as the following optimization problem

min
~w∈Rm·p

‖~w‖2 subject to H~w =~t−An~x[0]

If the matrix B is of size n× p then H will be a wide matrix of size n×mp. The system H~w = ~y will
have infinite solutions, but as we saw in the previous section, the minimum norm solution comes from the
pseudoinverse.

~w ∗ = H†(~t−An~x[0])

5.1 Car Example
Let us take a look at the car model once more represented by following dynamics

d
dt

[
p(t)
v(t)

]
=

[
0 1
0 0

][
p(t)
v(t)

]
+

[
0
1
M

]
u(t)
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Suppose M = 1kg and we discretized our car model with rate T = 0.1s. The discretized model would be[
p[t +1]
v[t +1]

]
=

[
1 0.1
0 1

][
p[t]
v[t]

]
+

[
0.005
0.05

]

Assuming the car starts at rest ~x[0] =~0 let us try to move the car to p = 10m with no velocity in two
time-steps. 2

~x[2] =

[
10
0

]
= A2~x[0]+ABu[0]+Bu[1] =

[
B AB

][u[1]
u[0]

]
The inputs u[0] and u[1] can be computed through a matrix inverse as follows

~w =

[
u[1]
u[0]

]
= C−1~x[2] =

[
−2000
2000

]

To reach our target in two time-steps, we would need to apply forces of 20kN which would break our car.
Therefore, let’s try to set up a minimum norm problem to reach our target in ten time-steps.

H =
[
B AB · · · A9B

]
~w =

[
u[9] u[8] · · · u[0]

]T

min
~w∈R10

‖~w‖2 subject to H~w =~t

Again we compute the minimum norm solution by applying the pseudoinverse

~w ∗ = H†~t ‖~w‖= 220

Notice how the norm drops significantly. As we add more time-steps, the norm ‖~w‖ will continue to drop
off. The results are plotted below.

Contributors:

• Taejin Hwang.

2Warning: Do not try this at home. Moving 10m in 0.02 would be traveling at an average of 1100 miles per hour.
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