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1 Introduction
In the previous note, we looked into how fast a computer can operate and how much energy it would
take. This was done by modeling transistors as switch with a resistor and gate capacitance and through the
mathematics of differential equations.

Now that we understand differential equations, we will try to understand what exactly controls the speed of
our computers. In addition, we will look at piecewise constant inputs which will give us some insight on
how we can control our systems.

2 Time Constants
The differential equation d

dt x(t) = λx(t) with initial condition x(0) = x0 has solution x(t) = x0eλ t . Note that
when we analyzed the CMOS inverter, the constant λ was always negative.

This implies that the solution to an RC circuit will always be a decaying exponential since the physical
values of the resistor and capacitor are always positive. Notice that as t → ∞, the response decays to 0 and
the value of a = |λ | dictates how long it takes our response to reach steady state.

We provide some plots below to illustrate this effect with multiple values of a.
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Notice how the response decays quicker for larger values of a. This quantity is so important, that we call
1
a the time constant denoted by the Greek letter τ. Mathematically, it is defined as the time it takes for the
response to be within 1

e of its steady state value.

For an exponential that decays to 0, this would be the time at which it decays to 1
e = 36.8% of its initial

value whereas for a rising exponential, this would the time at which the response rises to 1− 1
e = 63.2% of

its steady state value.
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Looking back at our RC circuit modeled by the differential equation d
dt v(t) =− 1

RC v(t), with initial condition
v(0) =VDD, we can solve for the time constant by finding the time τ at which v(τ) = VDD

e .

v(τ) =VDDe−
τ

RC =
VDD

e

A quick computation tells us that our time constant τ = RC. This immediately tells us that the physical
values of the resistor and capacitor are what affect the speed at which our response decays to 0 or rises to
VDD. If we wanted to speed up the response by lowering τ, we would have to either lower the value of our
resistor or capacitor.

We’ve shown a diagram below as a reference depicting how much a capacitor charges after a certain number
of time constants. From the diagram we see that after 3τ, the capacitor has charged up to 95% and after 5τ

the response will be within 1% of its steady state value.

How many τ will it take?
With our new definition of a time constant τ we have not only understood how long it takes for our
differential equation to reach steady state, but we have also created a metric by which we can measure
how close to steady state our response will be after a specified period of time.
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3 Piecewise Constant Time Varying Inputs
Let’s consider the following RC circuit with a “input” source vs(t) that changes over time.

−
+vs(t)

R I(t) vc(t)

C

Figure 1: The source vs(t) changes over time.

In the previous note, we learned to solve for the transient voltage vc(t) on a capacitor when vs(t) = 0 and
vs(t) =VDD. For example, when vs =VDD, we wrote the differential equation

d
dt

vc(t) =−
vc(t)
RC

+
VDD

RC

and arrived at the following solution for t ≥ 0.

v(t) =VDD(1− e−
t

RC ).

In this note, we’ll consider the case when vs(t) is piecewise constant. To solve these differential equations,
we look at the differential equation in “windows” and find the solution for each window. We provide an
illustration of what it means to be piecewise constant in the figure below.

Illustration of Piecewise Constant Inputs
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We provide a piecewise constant example of vs(t) where vs(t) = 1 for t ∈ [0,2) and vs(t) = 0 for
t ∈ [2,4). To solve for vc(t) we can treat vs(t) as a constant 1 or 0 depending on the interval we are
in.
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4 Switching Inputs
Let us start by considering the most basic changing input that we can think of: A voltage turning on to some
value VDD and then turning off. We will assume that vs has been 0 for a long time meaning vc(0) = 0V.
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Figure 2: On and Off input: On for 10τ . Here τ = RC is the time constant for the circuit.

To solve for vc(t), we will break our problem into two by looking at the window when vs =VDD and vs = 0.

• t ∈ [0,10τ) : In this window, vs remains constant at VDD. Therefore, the differential equation will be

d
dt

vc(t) =−
1

RC
vc(t)+

VDD

RC

which has solution vc(t) =VDD(1− e−t/RC). Note that this solution is only valid for t ∈ [0,10τ).
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• t ∈ [10τ,20τ) : In this window, vs remains constant at 0V. Therefore, the differential equation will be

d
dt

vc(t) =−
1

RC
vc(t)

The initial condition will be vc(10τ) ≈ 1V. After 10τ we can approximate vc as fully charged. This
tells us that the solution to the differential equation is vc(t) =VDDe(t−10τ)/RC.
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5 Another Example
Let us look at the exact same example, where vs switches much quicker than the first example.
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Figure 3: On and Off input: On for τ . Here τ = RC is the time constant for the circuit.

We can take a similar approach by look at each individual window where vs is constant.

• t ∈ [0,τ) : In this window, vs remains constant at VDD. Recall from the previous example that the
solution is of the form vc(t) =VDD(1− e−t/RC). Notice how vc only reaches 63% of VDD.
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• t ∈ [τ,2τ) : In this window, vs remains constant at 0V. However, the initial condition will be vc(τ) =
0.63V. We can solve this differential equation to get solution vc(t) = 0.63e(t−1)/RC.
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Again notice that vc is unable to decay to zero since vs switches every τ.
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We can repeat the same process for the next two windows and we’ll see that vc is stuck in between 0 and 1.
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This should give a better illustration of the effect that the time constant has on a first-order system.

Here’s another interesting example to look at

V i
n

T 2T 3T 4T 5T

You should notice that the solution vc(t) continually tries to follow the value of Vin. This is the key idea
behind digital control and we will explore more of this in a later note.

Try creating your own piecewise inputs and analyze the effects of smaller and larger τ.
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