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1 Overview
In this note, we will be taking a look at another application of the SVD called Principal Component
Analysis. It is a commonly used technique to reduce the number of dimensions in our data.

Let’s imagine we have a large dataset of noisy, redundant, and intuitively intractable data. We know that
this data should have some inherent meaning, but we just don’t know it. Each data point may consist of
hundreds or thousands of attributes and Principal Component Analysis or PCA will help us find trends in
this data.

To do this, we will be looking at two perspectives of PCA. The first perspective will be to find the directions
of maximal variance in the data while the second is to look at how the SVD can approximate a dataset. In
either case, we will look at how to transform our data into a new coordinate system which better represents
the trends in our data.

2 Problem Statement
Lets say we have a collected m observations of n variable features x1,x2, . . . ,xn. We can then aggregate our
data into an m×n data matrix X where the rows of X represent a single sample (x1,x2, . . . ,xn). We will call
the ith sample~xT

i where~xi is a vector in Rn.

X =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

...
xm1 xm2 · · · xmn

=


←~xT

1 →
←~xT

2 →
...

←~xT
m→

 (1)

We would like to find a basis {~v1,~v2, . . . ,~vk} for k < n, that can approximate the n features we currently
have. This new basis spans some k dimensional subspace of Rn and we can project all of our datapoints~xT

i
onto this subspace to approximate the features. In the next sections, we look at two different persepctives
on how this basis is formed and can approximate our datapoints.

3 Variance Maximization Perspective
The first perspective we will be looking at is that of variance maximization. In a given dataset, certain
variables will be show more correlation than other variables and will show larger signs of variability. What
makes our data “special” is the directions in which this variability occurs and the magnitude of the correla-
tion between variables.

We will analyze the meaning behind variability in a dataset and try to understand how certain directions in
the data can capture more variability than others. Using these most important directions, we will be able to
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perform dimensionality reduction through PCA.

3.1 Variability in Data
Let’s suppose we had a sample dataset of n = 2 dimensions and m = 100 points.
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Visualization of 2D Data

Between the x and y variables, we are able to say that there is more variability across the line y≈ x than its
perpendicular complement x≈−y.
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If we wanted to capture our data with just a single dimension, then one way to do this would be to take the
line y≈ x and project all of our data-points onto that line. We would no longer be able to capture variability
across the perpendicular axis, but we are doing the best we can with a single dimension.

The next section formalizes the observations we’ve made from this example into the familiar language of
Linear Algebra with a pinch of Probability.
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3.2 Preliminary Notation
To start off, let’s introduce a term called variance which captures the amount of variability in a random
variable X . Given m samples x1, . . . ,xm from a random variable X , we define the mean, µ and variance,
Var(X), from the sample observations:1

µ =
1
m

m

∑
i=1

xi Var(X) =
1
m

m

∑
i=1

(xi−µ)2 (2)

From our model defined in Section 2,~xT
i represents a single data-point and all of the data-points are aggre-

gated as the rows of the data matrix X . Now let’s a look at the vector X~w where ~w is a unit vector of arbitrary
direction in Rn.

X~w =


←~xT

1 →
←~xT

2 →
...

←~xT
m→

~w =


~xT

1 ~w
~xT

2 ~w
...

~xT
m~w

 (3)

This follows the idea from the previous section where we are searching for a direction in the data with most
variability. Since ~w is a unit vector,~xT

i ~w is the weight of the projection of the ith datapoint onto ~w.

proj~w~xi = 〈~xi,~w〉~w = (~xT
i ~w)~w (4)

The projection signifies how strongly the data-point~xi aligns with the direction of ~w. Therefore, our goal is
to find the direction ~w that maximizes the variability in these projections as much as possible.

Now before we look at the variance of these projections, let’s create a new matrix A where we subtract the
mean of each column. We do this so that the origin~0 represents the center of our data.

A = X− 1
m
~1~1T X (5)

As an example, if we have the matrix X , the demeaned matrix A is as follows

X =

 1 2
−1 3
3 4

 =⇒ A =

 1 2
−1 3
3 4

−
1 3

1 3
1 3

=

 0 −1
−2 0
2 3

 (6)

Note how the columns of X now sum to 0. As a quick lemma, we can show that if X has columns that sum
to 0, then the entries of A~w will also sum to 0. We won’t show this here, but we leave it as an exercise.

3.3 Variance Optimization
Now that we have defined some preliminary notation, let us look at the variance of A~w which represents the
projection of each datapoint. Since the matrix A has zero mean, we know that A~w has zero mean. Therefore,
we can write out the formula for variance as

Var(A~w) =
1
m

m

∑
i=1

(~xT
i ~w)

2 =
1
m
‖A~w‖2 (7)

1Don’t worry if you haven’t taken CS70 yet. We won’t be talking much more about mean and variance.
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The goal behind PCA is to find a new basis which best represents our data. One way to think about this is to
maximize the variance of A~w over all unit vectors ~w ∈ Rn. We can phrase this as the following optimization
problem

max
‖~w‖=1

Var(A~w) =⇒ max
‖~w‖=1

‖A~w‖2 (8)

We can remove the 1
m term since it does not affect our goal of searching for the optimal ~w.

3.3.1 Spectral Optimization

So how can we solve the following optimization problem stated above? One way to do this is by looking at
the SVD of A.

max
‖~w‖=1

∥∥∥UΣV T~w
∥∥∥2

The matrix U has orthonormal columns, so it will not change the length of the vector ΣV T~w. We can view
V T~w as another rotation of the vector ~w into a new basis represented by the columns of V. Searching over
all vectors ~w with norm 1 is equivalent to searching over all~z =V T~w with norm 1.

Therefore, we can rephrase our optimization problem as

max
‖~z‖=1
‖Σ~z‖2 (9)

It follows that the optimal solution is~z=~e1 since the Σ values are ordered from largest to smallest. Changing
coordinates back to the standard basis, ~w =V~e1 =~v1.

3.3.2 Spectral Norm

As an aside, let us take a look at the Spectral Norm of a matrix and see how it is related to the optimziation
problem above. The spectral norm of a matrix A is denoted as ‖A‖2 and can be thought of as the maximum
factor A can scale the norm of a vector~x.

‖A‖2 = max
~x 6=~0

‖A~x‖
‖~x‖

= σ1 (10)

Note that this norm is defined over the vector space of n× n matrices. Here a vector is an n× n matrix A.
In either case, the vector that maximizes the norm A~x is~v1 or the eigenvector of largest eigenvalue of AT A.
The spectral norm‖A‖2 will always be equal to the largest singular value of the matrix A. Try to verify that
all of the properties of norms do indeed hold for the spectral norm of a matrix!

3.4 Principal Components
We have solved our variance maximization problem to find our first vector ~v1 which turned out to be the
eigenvector of largest eigenvalue of AT A. Now how can we pick our remaining vectors {~v2, . . . ,~vk}?
We will continue to look at vectors that maximize the variance of our datapoints. Since we have already
found the direction of maximal variance, we will now try to find the maximum variance across all directions
orthogonal to the vector~v1.
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As an optimization problem, we can phrase this as the following

max
‖~w‖=1

Var(A~w) subject to ~wT~v1 = 0 (11)

The solution to this problem is ~w =~v2. If we were to continue doing this, it turns out that the orthonormal
eigenvectors ~vi of AT A form our PCA basis. These basis vectors are called principal components and in
practice, we pick k < n vectors to perform our dimensionality reduction.

As a final remark, the variance in each direction will be σ2
i

m and the standard deviation, sometimes referred
to as the weights of each principal component will be σi√

m .

3.5 Back to the Visuals
Let’s revisit the visual example and connect it back to PCA. We center the data and compute the SVD to find
the principal components~v1,~v2. The figure below plots the principal components~vi scaled by the weights.
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Since~v1 is the direction with maximal variance in the data, we can project all of the (x,y) data-points onto
the first principal component~v1 to perform dimensionality reduction.
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4 Low Rank Approximation Perspective
An alternate way of viewing Principal Component Analysis is through a low rank approximation using the
SVD. We will be using the same data matrix X , and demeaned matrix A from the previous section.

Given some data matrix A with rank r, we would like to find a matrix Bk of rank k that best approximates A.
Recall that we can use the truncated SVD to make a low-rank approximation!

A≈ Ak =
k

∑
i=1

σi~ui~vT
i (12)

While this may be a good rank k approximation of the matrix A, how do we know that it’s best one?

4.1 The Size of a Matrix
We should naturally question how to measure the size of a matrix A. One way to define a norm for a matrix
is through the spectral norm.

‖A‖2 = max
~x 6=~0

‖A~x‖
‖~x‖

= σ1 (13)

An alternate norm that we could define for a matrix is the Frobenius Norm which is defined as the square
root of the sum of all singular values of A squared.

‖A‖2
F =

r

∑
i=1

σ
2
i (14)

Whichever norm we use, this lets us represent the error of our rank k matrix as the norm of a matrix ε.

‖ε‖2
F =‖A−Bk‖2

F (15)

4.2 Optimization Problem
The goal is to find a matrix Bk that best approximates the original data A. As an optimization problem, this
would look like the following

min
Bk
‖A−Bk‖F

subject to Rank(Bk) = k

It turns out that the Eckart-Young Mirsky Theorem states that the optimal Bk is in fact the rank k SVD
approximation of A.

Ak =
k

∑
i=1

σi~ui~vT
i (16)

Amazingly, the Eckart-Young Theorem holds for both the Spectral and Frobenius norm, but the proof is
quite difficult and is deemed out of scope.

To summarize the result, the best rank k approximation of the matrix A comes from the truncated SVD. The
principal components will be the basis that best approximates this data. Since our data was arranged as the
rows of A, the subspace that best approximates Col(AT ) will be the span of the first k right-singular vectors
{~v1, . . . ,~vk} .
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5 Computing the Principal Components
Having introduced two perspectives on Principal Component Analysis, let us take a look at two ways to
compute the principal components.

5.1 Covariance Matrices
Through the variance maximization perspective, we can compute the principal components by finding the
eigenvectors of the covariance matrix C = 1

m AT A of our data.

1 Compute the covariance matrix:

• Center the matrix along the attributes (columns in this case), so that A = X− 1
m
~1~1T X .

• Find the covariance matrix C = 1
m AT A or C = 1

m−1 AT A depending on whether your data is a
sample from a population or the full population.2

2 Diagonalize the covariance matrix C:

• The covariance matrix is symmetric so it is orthogonally diagonalizable: C = PΛP−1.

• Since P has orthonormal columns, we know PT = P−1.

• The columns of P are the principal components.

• The square root of the eigenvalues
√

λi are the weights.

5.2 Low-Rank SVD
While the approach through the covariance matrix is mathematically sound, for reasons outside of the scope
of this class, computing eigenvectors of the matrix AT A can become numerically unstable. Therefore, in
practice, the SVD is better suited to compute the principal components.

1 Normalize the data matrix:

• Center the matrix along the attributes (columns in this case), so that A = X− 1
m
~1~1T X .

• Scale the matrix A by 1√
m so that S = 1√

m A. This is done in order to compute the correct weights.

2 Compute the SVD of the matrix S:

• The SVD of the matrix S will be of the form S =UΣV T .

• The columns of V are the principal components.

• The singular values σi are the weights.

As a sanity check, we can see that C = ST S meaning the eigenvectors and singular values align properly.
You might ask why we use the SVD over covariance matrices when the SVD also involves computing
eigenvectors of the matrix AT A. It turns out that numerical tools have developed efficient methods to compute
the SVD that don’t involve computing the eigenvectors of AT A.

2This distinction is called Bessel’s correction which takes into account of the bias when sampling from a population. However
in practice, with a lot of data, m will be large so this distinction will be very small.
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