
Note 21 @ 2020-11-11 15:53:44-08:00

EECS 16B Designing Information Devices and Systems II
Fall 2020 UC Berkeley Note 21

1 Introduction
In the final module of the course, we will take a look at the introductory concepts behind digital signal
processing. A digital signal processing system can get quite complex but we will show the simplest of
models where we take a continuous time signal, sample it every T seconds, apply digital filter, and then
interpolate it back into a continuous time signal to transmit.

Sampling

T

Digital
Filter

CPU

Transmitter

Interpolation

x(t) x[n] = x(nT ) y[n] y(t)

Putting all of the pieces together, we were briefly introduced to the idea of sampling in the controls module
through discretization. We saw sampling as the evaluation of a continuous function x(t) at evenly spaced
intervals to get a discrete signal x[n].

In the circuits module, we analyzed multiple types of filters such as a low and high-pass filter. These filters
took continuous, sinusoidal inputs and outputs and are referred to as analog signals. We however, will take
a look at digital signals since computers fundamentally behave in discrete-time.

Lastly, the transmitter takes a discrete signal y[n] and interpolates a continuous function y(t). In this note,
we will take a look at interpolation and understand how we can reconstruct a continuous-time signal out
of a discrete-time signal. An interesting and practical question is whether or not we can ever reconstruct the
signal perfectly from the samples; we haven’t shown you the tools needed to answer that question yet, but
you’ll want to keep it in mind.

2 Interpolation
Let’s first define the problem statement behind interpolation. Supose we took N evenly spaced apart samples
every T seconds from an unknown continuous-time signal y(t).

y[0],y[1], . . . ,y[N−2],y[N−1]

We would like to recover the original continuous-time signal y(t) that we have taken samples from.

This may sound similar to a regression problem, but we now have an additional constraint that y(t) must
match y[n] at each of its sample points. In other words, we are requiring that

y[n] = y(nT ) for n = 0,1, . . . ,N−1.

In some sense, we can think of interpolation as the opposite of sampling since we are constructing a
continouous-time signal out of a discrete signal.

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 1



Note 21 @ 2020-11-11 15:53:44-08:00

Interpolation is an important – and indeed necessary – part of any discrete-time system that interacts with
the real world, since the real world is always in continuous-time. In other words, interpolation allows for an
interface between discrete information and the continuous world.

In its role as an interface, we have actually already met interpolation, as we used it implicitly during the
control theory module. Recall that for a sampled discrete-time system, applying the discrete-time control
u[n] = y actually means that we apply the constant continuous-time input u(t) = y over the interval t ∈
[nT,(n+1)T ) to the continuous-time system. This means that u(t) is an interpolation of u[n] – specifically
a zero-order hold interpolation, as shown below.

u[0]

u[1]

u[2]

u[3]
u[4]

The essential strategy for interpolating a signal is to express the interpolation as a weighted sum of some
chosen continuous-time functions φi(t); that is, to write

y(t) = ∑
i

αiφi(t), (1)

where the αi weights on functions φi(t) are determined by the specific discrete-time samples y[n] in question.
From this general starting point, two specific methods emerge: the method of interpolation by polynomials
and the method of interpolation by basis functions.

3 Polynomial Interpolation
Given n distinct points, we can find a unique degree n−1 polynomial that passes through these points. Let
the polynomial p be

p(x) = a0 +a1x+a2x2 + · · ·+an−1xn−1 (2)

Let the n points be
p(x1) = y1, p(x2) = y2, · · · , p(xn) = yn,

where x1 6= x2 6= · · · 6= xn.

We can construct a matrix-vector equation as follows to recover the polynomial p.
1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

...
...

1 xn x2
n . . . xn−1

n


︸ ︷︷ ︸

A


a0
a1
...

an−1


︸ ︷︷ ︸

~a

=


y1
y2
...

yn


︸ ︷︷ ︸

~y

(3)

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 2



Note 21 @ 2020-11-11 15:53:44-08:00

We can solve for the a values by setting:
~a = A−1~y (4)

Note that the matrix A is known as a Vandermonde matrix whose determinant is given by

det(A) = ∏
1≤i< j≤n

(x j− xi)

Since x1 6= x2 6= · · · 6= xn, the determinant is non-zero and A is always invertible.

Another way to view polynomial interpolation is through basis functions. By picking the polynomial basis
φi(t) = t i, we see that

y(t) = ∑
i

αit i (5)

The αi coefficients should align directly with the ai that we solved for in (4).

Note that there are more efficient methods to perform polynomial interpolation instead of inverting the
Vandermonde matrix through techniques such as Lagrange Interpolation but we won’t be showing these
examples in this note.

4 Interpolation by Basis Functions
Another method to interpolate discrete samples is through basis functions. We construct the interpolation
rather directly, as

y(t) =
N−1

∑
k=0

y[k]φ(t− kT ),

where φ(t) is a basis function 1 of our choosing. The basis function φ may be any function we like that has
the following two properties:

• φ(0) = 1;

• φ(kT ) = 0 for all k 6= 0.

That is, the function is 1 when k = 0 and 0 at all other k multiples of T . These two properties ensure that the
y(t) we constructed in the summation above satisfies y(kT ) = y[k].

This method gives us more room for creative interpolation schemes. For every new basis function we come
up with, we get a new interpolation scheme. Several common interpolation schemes can be written in terms
of basis functions.

For example, zero-order hold (ZOH) interpolation can be expressed using a box-shaped basis function:

φ(t) 1

0 T-T

y1

y3

y2

0 T 2T 3T

=⇒

1Based on the similarity of the name, you probably suspect that basis functions are related to the basis of a vector space in
some way. This is actually correct, in a way, but an exploration of this relationship is sadly out of scope.

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 3



Note 21 @ 2020-11-11 15:53:44-08:00

Similarly, piecewise linear (PWL) interpolation can be expressed using a triangle-shaped basis function:

φ(t) 1

0 T-T

y1

y3

y2

0 T 2T 3T

=⇒

Another useful basis function is the sinc function sinc(x) = sin(πx)
πx , where we take φ(t) = sinc(t/T ). The sinc

function is differentiable and band-limited, the importance of which will become clear in the DFT module.

φ(t) 1

0 T-T

y1

y3

y2

0 T 2T 3T

=⇒

5 Interpolation Examples
We will now take a look at all of the interpolation schemes and draw comparisons between each approach.
Let’s start by looking at a set of discrete samples y[n] from n =−5 to 5 spaced T = 1 apart.

5 4 3 2 1 0 1 2 3 4 5
n

1.0

0.5

0.0

0.5

1.0

y[
n]

Sampled Points

Each interpolation method has its own tradeoffs and there is no perfect solution that works for every sin-
gle use case. Often times, the specific method is chosen based on the problem we are dealing with. For
example, zero-order hold will be useful when performing discretization but will perform very poorly when
reconstructing audio samples. Piecewise Linear Interpolation is commonly used in Computer Graphics and
Lagrange Interpolation can be used when sending messages over a channel.

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 4



Note 21 @ 2020-11-11 15:53:44-08:00

5.1 Zero-Order Hold
To perform Zero-Order Hold Interpolation (ZOH), we keep the value of y[k] constant for t ∈ [kT,(k+1)T ].

5 4 3 2 1 0 1 2 3 4 5
t

1.0

0.5

0.0

0.5

1.0

y(
t)

Zero-Order Hold Interpolation

5.2 Piecewise Linear Interpolation
In linear interpolation (PWL), we draw a line between point y[k] and y[k+1].

5 4 3 2 1 0 1 2 3 4 5
t

1.0

0.5

0.0

0.5

1.0

y(
t)

Piecewise Linear Interpolation

5.3 Sinc Interpolation
We compute sinc interpolation through numerical tools and the result will be a smooth function.

5 4 3 2 1 0 1 2 3 4 5
t

1.0

0.5

0.0

0.5

1.0

y(
t)

Sinc Interpolation

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 5



Note 21 @ 2020-11-11 15:53:44-08:00

5.4 Polynomial Interpolation
Lagrange Interpolation will try to create a polynomial of degree at most 10 out of the data. The result will
be a smooth function similar to sinc interpolation.

5 4 3 2 1 0 1 2 3 4 5
t

1.0

0.5

0.0

0.5

1.0

y(
t)

Lagrange Interpolation

5.5 Tradeoffs
Now that we have seen the results from each interpolation, let’s discuss the tradeoffs between each method.
Each interpolation method will be exact at its sampled point y[k] but may show some error at points that are
not multiples of kT. Sinc and Polynomial Interpolation are advantageous if we are trying to reconstruct a
smooth function. ZOH and PWL will show larger errors but are advantageous in that they are much easier
to implement in practice.

When looking at our example above, Sinc and Polynomial Interpolation have near identical reconstructions.
So what makes the two methods different? Remember that interpolation creates a function y(t) for all values
of t. Therefore, let’s look at values of y(t) from [−10,10] which are outside of the sampled window [−5,5].

10 5 0 5 10
t

6

4

2

0

2

4

6

y(
t)

Lagrange Interpolation

10 5 0 5 10
t

1.0

0.5

0.0

0.5

1.0

y(
t)

Sinc Interpolation

Polynomial interpolation creates an good reconstruction for the points we have sampled from −5 to 5 but
becomes unstable as t grows large. Given n sampled points, polynomial interpolation creates a polynomial
of degree at most n−1. However, each polynomial tk becomes unstable when k > 1. In addition, polynomial
interpolation is very susceptible to overfitting the sampled points.

Sinc Interpolation on the other hand, generalizes the sampled pattern and is able to reconstruct a sinusoid.
This is because the basis function φ(t) = sinc(t/T ) searches for periodic patterns. It is also more stable than
polynomial interpolation since it does not grow to ∞ as t→ ∞.

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 6



Note 21 @ 2020-11-11 15:53:44-08:00

6 Conclusion
In this note, we saw how to recover a continuous-time signal from a set of discrete samples through a
technique called interpolation. To do this, we considered a set of discrete samples x[n] spaced T seconds
apart. Contrary to regression, interpolation had the additional constraint that each sample x[n] had to match
the continuous-time function at x(nT ).

In order to perform interpolation, we introduced two technqiues: Polynomial Interpolation and Basis Func-
tion Inteprolation. Using Polynomial Interpolation we were able to create a polynomial of degree at most
N−1 using the sampled points. Basis Functions on the other hand, gave us more creativity on how we could
shape our interpolation whether it was the rigid box-shaped basis or the smooth sinc basis.

Depending on the context, each method had its own unique advantages and tradeoffs. Methods such as
Zero-Order Hold and Piecewise Linear Interpolation were easy to implement but came at the cost of larger
approximation error. Polynomial gave us nice smooth function but we saw that it was susceptible to overfit-
ting and was “unstable“ at the endpoints. Moving forward, Sinc Interpolation will be considered the golden
standard for interpolation and in the next note, we will take a look at how we can reconstruct our signal
perfectly given a specific set of conditions.

Contributors:

• Taejin Hwang.

• Murat Arcak.

• Alex Devonport.

• Siddharth Iyer.

• Jane Liang.

© UCB EECS 16B, Fall 2020. All Rights Reserved. This may not be publicly shared without explicit permission. 7


	Introduction
	Interpolation
	Polynomial Interpolation
	Interpolation by Basis Functions
	Interpolation Examples
	Zero-Order Hold
	Piecewise Linear Interpolation
	Sinc Interpolation
	Polynomial Interpolation
	Tradeoffs

	Conclusion

