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1 Introduction

In the previous sets of notes, we’ve developed a set of tools to solve a scalar differential equation of the
form

d
Ex(t) = Ax(t) +u(r) (1)
While scalar differential equations are very useful in modeling a first-order system such as an RC circuit,
we will need to develop a new set of methodologies to tackle higher order differential equations.
Such differential equations are called vector differential equations and can be written in the form
d
dt
In this note, we will focus on how to set-up and solve vector differential equations.

X(t) = AR(1)+b 2)

2 Notation
The vector ¥ is often called the state vector and the individual entries x1,...,x, are called the states.
X1
X=
Xn

The matrix A is called the differentiation matrix since it performs the act of differenation.

3 Second Order System

Let’s take a look at a more complicated RC circuit example with two resistors and capacitors.

Let C; =Cy = IuF, Ry = sMQ and R, = sMQ.

Rl il Vi RZ 1%)

Vin CD —_ G G

Figure 1: Two dimensional system
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Now let’s try to analyze the discharging case. Let V;,, = 1V for time ¢ < 0, and V;;, = OV for time ¢ > 0. With
this in mind, we have two steady state conditions:

(a) Initial condition r = 0 : The voltage has been charging the capacitors for an infinite amount of time.
Hence, both capacitors have voltage v¢, = v¢, = 1V and the current /; = I, = 0A.

(b) Ast — oo : After the capacitors have been allowed to discharge for a long period of time, they carry
no charges on their plates, hence v¢, =vc, =0V.

Next, let us solve for the transients, i.e. how does our system go from (a) to (b)? First we need to set up the
circuit equations.

d
Vo=V —ir'Ry izzczavz 3)
O—Vlzil'R1:>l'1:—vfl (4)
Ry
=i +C d 5)
i = —
1=h+Covi

Next, to solve for the transients, we need to first define our system variables. The standard approach
that we will always take is to make anything that gets differentiated into a state variable. Hence, we
will need two state variables, v; and v;, the voltages across C; and C; respectively. We will need to setup
differential equations to solve for our system variables.

3.1 Systems of Differential Equations

Using the circuit equations above, we are able to isolate each derivative term and write them in terms of the
state-variables.

d 1 1 va(t)
—vi(t) =— t 6
dZ‘VI( ) <R1C] +R2C1)VI( )+R2C1 ©)
d t t
7v2(t) — M — m @)
dt R,C, R,
Now let us define our state-vector X = [31] . This will yield vector-differential equation
2
d o] -t | (e ) | o
- — RiCt ' Ry I TRy — RiCi ' RG RyCy 1 (8)
: 1 1
de 0] | RG T RG ey ~ma | 120
d_ . [-5 2],
=2 _2] %) ©)

In equation (9)), we have substituted in for the component values defined above so that we get a matrix with
concrete numbers in it.
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4 The Plan

Now that we have a vector-differential equation, we will outline the overall roadmap of this note.

1 First we will look at the case when A is diagonal and understand why it is easier to solve.

2 Then we will introduce a Linear Algebra technique called diagonalization to write A in terms of its
eigenvectors and eigenvalues.

3 Lastly, we will solve the differential equation using the results from diagonalization.

4.1 Diagonal System
Let us consider the following circuit:

Vi Ry i : R Vo

— G Vin CD G

Figure 2: Diagonal System

Both the capacitors have been charged to v;, and at t = 0, we set v;; = OV, and allow the capacitors to
discharge. Hence our initial conditions are v{(0) = v2(0) = V;,. We get the following branch equations:

d Vi

i 1V R, (10)
d V2

i 25,2 R (11)

Hence from equations and (1)), we get the following uncoupled differential equation:

d =0
_ Vl (t) — R1C1 1 Vl (t) (12)
dt 1% ([) O — m V2 (t)
Notice how the states v; and v, are independent of each other! This means we can solve for v; and v, using
all of the techniques from the previous notes on scalar differential equations.
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4.2 Diagonalization

Let’s suppose we had a system of differential equations of the form

d

(1) = AX(1) (13)

and the matrix A is 2 x 2 with a set of linearly independent eigenpairs (A;,V)) and (A,,V,). EI
Then by the definition of eigenvectors and eigenvalues, we know that

AV = 11\71 (14)
AVy = (15)

These two relationships can be expressed simultaneously using matrices that consolidate the eigenvectors
(side by side) and eigenvalues (on a diagonal):

A[vl vz}:[vl vz] ’})1 /{)2 (16)

Calling the former two matrices V and the latter A,
AV =VA 7

Because we chose two linearly independent eigenvectors to constitute V,V is invertible. Stating A in terms
of its eigenvectors and eigenvalues is called the eigendecomposition or diagonalization of A :

A=VAV~! (18)

5 How to Solve?

Now that we’ve understood the motivation behind diagonal systems and on the diagonalization of a matrix
A, we can go back to our original system of differential equations introduced in the first section.

Coming back to our original system, from equation (9),

d . -5 21,
S0 =Ax0=| 7 7|30 (1%

As discussed, let’s use our diagonalization technique to solve this system of differential equations.

We first compute the eigenvectors and eigenvalues of the matrix A.

_2 1
M=-6, 1= ° h=-1, Hh=|%
V5 V5

INote that this is not always the case and there are matrices that do not have a full set of eigenvectors that form a basis for R”.
Such matrices are called defective matrices and we will explore them in the next note.
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Define the matrix V = {\71 172}, and the diagonal matrix A = [_06 _01] , we can write A = VAV ™! to
rewrite equation (9) as follows:
d . S e
Ex(t) =AX(t) =VAV~X(t) (20)
-2 106 ol[-2&2 L -1
EE RS a
V55 V55

We will now define a new variable 7(z) = [Zl(t) = V~!%(¢). By left multiplying V~! on both sides of

equation (20), we get the following:

L d T e
1% Ex(t)—V AX(1) (22)
— Ly130) = Az (23)
dt
d_ . -6 o].
:dtz(t)—[o _1] 2(0) 24)

Because differentiation is linear, we can go from (22) to (23). In equation (24), we have successfully
uncoupled our equations and we can proceed to solve them independenly as mentioned earlier:

d

EZI(I) = —6Z1<l) = 71 (l) = k1€76[
d

EZQ(I‘) =-—2() = 2(t) = ke

Next, we need to solve for our constants k; and k,. Recall our initial conditions, v{(0) = v,(0) = 1V. Hence,
z1(0) and z(0) are given by:

_2 L _ b
w2 Y00 -
v2(0) 22(0) N NG
Therefore, k; = —\% and kp = \% meaning we have solutions for z; () and z,(¢). Our final step is to trans-

form back into our original variable ¥ as follows to find v (¢) and v;(¢):

x=VzZ (26)
_2 L]l
=| §] [ Qt] @7)
V55 5
2 -6t 4 3 -t
e 7+ ze
- )

For ¢ > 0, we find that vy (t) = 2¢7% + 3¢ " and vy (1) = —1e % + Se . Figureis a plot of our solutions:
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Discharging Capacitors over Time

—V

Voltage (V)

0 1 2 3 4 5 6 7
Time (s)

Figure 3: Initial Conditions: v;(0) = 1V and v,(0) = 1V

6 Nonhomogenous Systems

Now that we have a good understanding of the homogenous case, let’s look at the voltage transients of
charging our two capacitor system. In this case, we have two uncharged capacitors, i.e. v{(0) =v,(0) =0V,
and we apply a voltage V;, = 1V at time ¢t > 0. We get the following branch equations:

d
vy =vi—hR, L= CZE\Q 29)
V. —
Vie—vi =Ry = I = - (30)
R,
L=hL+C 4 31
=L+
Hence, our matrix differential equation is:
ey ] - |- (wetea) wme | [n], [7
—X(t) = — = 1€ 21 20 R Cy 32
dtx() dt [vz] 1 __1L | |m * 0 (32)
L R, Ry,
A R R
=1, _2] s + 0 =AX+b. (33)

Looking back at our diagonalization process, from (20) we can define a new variable 7 to get the differential
equation

J L=z 775 _6
20 = A1) +¢ ¢=V1p= [ e ?] H = [ ﬁ] (34)
Vs V5

where ¢ = V5. We evaluate ¢ and uncouple our system of differential equations and as a result, we get
two first order scalar differential equations with a constant input.
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Since the initial condition ¥(0) = 0, the initial condition Z(0) = V~'%(0) = 0.

d

a0~ ai- L
ZQU%:_@O%*jSZizﬁﬂz—;%@t—n

Lastly, we convert our solution 7 back to X.

Finally, we have v () = 1 — %e_(’t - %e" and 14 e % — ge". Figure@is a plot of our solutions.

Charging Capacitors over Time
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Figure 4: Voltage transients for charging capacitors
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7 The Change of Basis Perspective

In this section of the note, we go back to our diagonalization process and draw the connection between
eigendecomposition and coordinate systems. This provides a perspective where we are in fact transforming
our coordinates into a basis in which the matrix A has a diagonal representation A.

Let’s start with a vector X € R”. This vector represents a point in space. When you think about this vector
written out using the coordinates, you are scaling the vectors in the standard basis (i.e. the columns of the
identity matrix, 7) by the components of X and then adding them up.

2 . L S - S

4 as the linear combination X = 2¢| — 4¢; where ¢€; and ¢, are

the standard basis vectors. But, suppose that I think about this vector in terms of a different set of directions.
More concretely, I define a new coordinate system:

For example, we can write the vector X =

1 1
D = Dy — 4
pr=1_,| 2= (40)
o 2 . .
Then to represent the vector X = | 4]0 We would need an alternate name for this vector. A quick compu-
. - 3 . C - - b
tation can show that 7 = 1 achieves this sincex=3-p; —1- p».
—6 —4 -2

—

The vectors that define this coordinate system form a basis, i.e. n linearly independent vectors py,... p,
defined with respect to the standard basis.

2We can find 7 by taking the inverse of P and multiply it by ¥. We wil explore why this is the case in the next page.
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7.1 Changing Coordinates

21
Now, let’s say I have a vector 7 which I am representing as | : | measuring with respect to my coordinate
n
system. How can I translate this to the coordinates you are familiar with? Well, instead of scaling the vectors
of the standard basis, we could scale the vectors defining my new basis.

Suppose that both of us were thinking of the same physical point in space and hence the vector X in your
basis is:

f221ﬁ1+"‘+2nﬁn (41)
| ’ 11

=B | |: (42)
| ] |z

=PZ7 43)

This also tells us that if we have a vector X written in the standard basis, we can transform it to its represen-
tation using P-basis vectors, 7, through the computation 7 = P~'X.

72 Matrices in Digerent Bases

To transform a vector from my basis to your standard basis involves just a matrix multiplication. If this is
the case, what would the matrix A look like in a different basis?

The matrix A performs a linear tranformation, y = A¥. We would like to visualize this transformation in a
different basis. In other words, we want to find the linear transformation D that performs the action w = DZ.

To do this, we must first change ¥ into the basis P. This is done by left multiplying to get 7 = P~'¥. Then,
we can apply the transformation D to get w = DP~'Z. Finally, since our vector W is in a different basis, we
must convert it back to the standard basis by multiplying by P to get ¥ = Pw = PDP~'%. This shows that
A=PDP~!'orD=P'AP.

We summarize our results in the diagram given in Figure 5|using the up and down arrows.

A

D

Figure 5: Change of Basis Mapping. It turns out D = P~'AP since matrix multiplication is done on the left.
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7.3 Back to Diagonalization

Now that we’ve established what a matrix A looks like in a different basis, the question to ask is whether
there is another basis within which this transformation is much simpler to understand.
Let’s suppose we had our new basis V so that ¥ = V7 and correspondingly, 7 = V!X, Similarly, ¥y = V' and
correspondingly, w = V~!y. Then:
AX =AVZ = A(z1V) + 2202) (44)
= 1AV + A%, (45)

Now, if chose our new basis to be the ones defined by the eigenvectors of A, then we can simplify:

=71 MV + 2240 (46)
|
. . 2,1 0 21
I
=VD? (48)
=VDV~ !z (49)

where D is the diagonal matrix of eigenvalues and V is a matrix with the corresponding eigenvectors as its
columns. Thus we have proved that A = VDV ~!. Furthermore, this also means that D = V1AV

7.3.1 Repeated Eigenvalues

For a 2 x 2 matrix, it’s possible that the two eigenvalues that you end up with have the same value, leading
to a phenomenon called a repeated eigenvalues. This repeated eigenvalue can have one or two dimensional
eigenspace (unlike a single, unrepeated eigenvalue, which will only have a one dimensional eigenspace).

For example, the following matrix has a repeated eigenvalue of 1.
A0
The A-eigenspace of this matrix is all of R? since for any vector ¥ € R?, AV = A¥.

k]

that have a single eigenvalue A = 0. (Easy to see by looking at the characteristic equation A% = 0.) In this

We can also have examples like

1 . . .
] and its multiples are eigenvectors here.

case, the relevant eigenspace is one-dimensional — only [O
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8 Defective Matrices

In our approach to solve a system of differential equations, we developed a methodology in which we could
turn a system of differential equations into n first-order scalar differential equations. This methodology
involved a process called diagonalization in which we viewed a matrix A through its representation in a
basis made up of eigenvectors. As a result, the matrix A had a diagonal representation A in our new basis.

However, note that each time we performed this process, we assumed that A was diagonalizable, or has a
full basis consisting of eignevectors. Sadly, not every matrix has » linearly independent eigenvectors as we
see above. In the next note, we will look at this case and a physical phenomena that arises from it. But for
the time being, the best we can do is hope that our matrix A is diagonalizable.

Contributors:
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