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EECS 16B Designing Information Devices and Systems II
Fall 2020 UC Berkeley Note 5

1 Introduction
This note follows up on Note 4 in which we examined vector differential equations and solved them using a
systematic approach by changing coordinates into a basis in which the matrix A had a diagonal representation
Λ. This let us examine our complicated system of differential equations as a series of n first-order differential
equations.

After solving the first-order differential equations and converting the system back into standard basis coor-
dinates, we saw that each state xi(t) was a linear combination of exponentials eλ1t , . . . ,eλnt . As a result, we
saw the connection between a system of differential equations and the eigenvalues of the matrix A.

In this note, we will develop more techniques to solving vector differential equations and also introduce a
new device called the inductor. The combination of an inductor with a capacitor will create an oscillatory
system with complex eigenvalues. Such oscillatory systems are the main focus of this note.

2 Guessing and Checking
We introduce the guess and check method for vector differential equations as a means of efficiency. You’ll
notice that we don’t have to compute the eigenvectors of the matrix A and won’t need diagonalization.1

In the previous note, we were able to solve for a system of differential equations and showed that the
solution is a linear combination of exponentials eλit . This means that we should be able to guess a solution
xi(t) = α1eλ1t + . . .+αneλnt . To illustrate this, we provide an example below

2.1 Example
Consider the following system of differential equations with the inital condition~x(0).

d
dt

[
x1
x2

]
=

[
−4 1
2 −2

][
x1
x2

]
~x(0) =

[
3
3

]
(1)

1 The first step is to solve for the eigenvalues of the matrix A. For the sake of bervity, we won’t show
the steps here, but λ1 =−5,λ2 =−2.

2 Now we guess a solution~x(t). As stated above, we’ll pick a linear combination of eλit as our guess.[
x1
x2

]
=

[
α1eλ1t +α2eλ2t

β1eλ1t +β2eλ2t

]
where α1,α2,β1,β2 are unknown constants that we need to solve for.

1The diagonalization method was used to rigorously show why the solution is in fact a linear combination of eλit . Without it,
we wouldn’t know what to guess.
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3 Notice that we have four unknowns but our intial condition only gives us two equations. Therefore,
we create two more equations by computing d

dt~x(0).

Notice that our initial condition tells us that

~x(0) =

[
α1 +α2
β1 +β2

]
=

[
3
3

]

To find d
dt~x(0), we must first take the derivative of~x(t).

d
dt
~x(t) =

[
−5α1e−5t −2α2e−2t

−5β1e−5t −2β2e−2t

]
=⇒ d

dt
~x(0) =

[
−5α1−2α2
−5β1−2β2

]

Then we use the fact that d
dt x(t) = A~x(t) from our differential equation:

d
dt
~x(0) = A~x(0) =

[
−4 1
2 −3

][
x1(0)
x2(0)

]
=

[
−4x1(0)+ x2(0)
2x1(0)−3x2(0)

]
=

[
−9
−3

]

4 Now that we have four equations and four unknowns, we can solve our system.

Solving for the α, we get

α1 +α2 = 3

−5α1−2α2 =−9

=⇒ α1 = 1,α2 = 2

Then we solve for the β

β1 +β2 = 3

−5β1−2β2 =−3

=⇒ β1 =−1,β2 = 4

5 We conclude by saying that the solution to the differential equation is[
x1(t)
x2(t)

]
=

[
e−5t +2e−2t

−e−2t +4e−2t

]

2.2 Second-Order Differential Equations
In differential equation literature, you will more often see higher-order differential equations as opposed
to vector differential equations. A higher-order differential equation is a scalar differential equation that
involves higher-order derivatives. Consider the differential equation

d2

dt2 y(t)+a
d
dt

y(t)+by(t) = 0 (2)

y(0) = y0;
d
dt

y(0) = w0 (3)

This is an example of a second order differential equation. Notice how there are two initial conditions for
this problem. An nth order differential equation will require n initial conditions for it to have a unique
solution.
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2.2.1 Guess and Check

To solve this differential equation, we can either guess and check or convert it into a system of differential
equations. We will start by guess the solution y(t) = keλ t .

y(t) = keλ t ;
d
dt

y(t) = kλeλ t ;
d2

dt2 y(t) = kλ
2eλ t (4)

kλ
2eλ t + kaλeλ t + kbeλ t = 0 =⇒ k(λ 2 +aλ +b) = 0 (5)

If our initial condition is nonzero, k will be nonzero meaning we have a quadratic equation for λ similar
to the characteristic polynomial of our matrix A. Since this quadratic equation has two roots λ1 and λ2, our
solution y(t) will be a linear combination of the functions eλ1t and eλ2t or of the form

y(t) = α1eλ1t +α2eλ2t (6)

Plugging in the initial conditions y(0) and dy
dt (0), we should be able to solve for the coefficients α1 and α2.

2.2.2 Converting to a Vector Differential Equation

Similar to how we converted a system of differential equations into a vector differential equation, we can
also turn our second-order differential equation into a first-order vector differential equation. We will do
so by defining state variables

x1(t) = y(t), x2(t) =
d
dt

y(t) (7)

Taking the derivative of our states, we see that

d
dt

x1(t) =
d
dt

y(t) = x2(t) (8)

d
dt

x2(t) =
d2

dt2 y(t) =−by(t)−a
d
dt

y(t) =−bx1(t)−ax2(t) (9)

Therefore, we can write this as a vector differential equation

d
dt
~x(t) = A~x(t) =

[
0 1
−b −a

][
x1(t)
x2(t)

]
(10)

Note that the eigenvalues of the A matrix yields the exact characteristic polynomial that we found using
guess and check. This is not coincidental and in fact arises since we were looking for eigenvalues of the
differentiation operator d

dt .
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3 Inductors
Let’s introduce a new passive component, an inductor. This new component will help us design more
interesting circuits and introduce oscillations within our circuits.

Inductors have a dual relationship in terms of voltage and current (I-V) as compared to capacitors (i.e., V
being proportional to change in I as opposed to I being proportional to change in V). The schematic symbol
of an inductor is drawn below:

(a) The unit of inductance is Henry (H).

(b) vL(t) = L diL(t)
dt

(c) iL(t) cannot change instantly.

(d) At DC steady state, inductors behave like short circuits since the current is constant meaning there is
no voltage drop.

(e) The energy stored in an inductor is: U = 1
2 LiL2(t)

While inductors are introduced in this course only as a circuit symbol and a mathematical construct, we are
not spending time on the physics behind them, they have multiple applications in the real world and you will
study them in future courses.

Inductors store energy by setting up a magnetic field. In the same way that a capacitor separates
charge (Q) and this leads to an ~E field, anytime we flow current down a conductor, this creates a
magnetic field (~B). Likewise, the magnetic field can store energy. Their behavior can be described
using Faraday’s law of induction.
The magnitude of magnetic field created by a straight wire is pretty small, so we usually use other
geometries if we are trying to create a useful inductance on purpose. A solenoid is a good example:

Note that the inductance (L) depends on geometry and a material property called permeability of the
solenoid core material. Inductors are useful in many applications such as wireless communications,
chargers, DC-DC converters, key card locks, transformers in the power grid, etc.
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Concept Check: The current across the inductor cannot change instantaneously. Why?
Solution: If our current changes instantaneously, then d

dt IL→∞, and from equation ((b)) the voltage across
the inductor VL→ ∞, which is not possible. Hence, our current cannot change instantaneously

4 LC Tank
Let’s take a look at a circuit with an inductor and capacitor in parallel. This is commonly known as an LC
tank, whose matrix will have purely imaginary eigenvalues.

In the following circuit, we have an inductor L = 10nH and capacitor C = 10pF in parallel.

Let IL(0) = 50mA and Vc(0) = 0V:

L

iL

C

+

−

vout

ic

First we define states x1 = IL and x2 =Vc. Then since the inductor and capacitor are in parallel:

VL =Vc (11)

KCL gives:

IL =−Ic =−C
dVc

dt
=⇒ dVc

dt
=− 1

C
iL (12)

VL =Vc = L
dIL

dt
=⇒ dIL

dt
=

1
L

vout (13)

Putting it into matrix form, as before:

d
dt

[
Vc

IL

]
=

[
0 − 1

C
1
L 0

][
Vc

IL

]
(14)

Finding the eigenvalues:

det

[−λ − 1
C

1
L −λ

]= λ
2 +

1
LC

= 0 (15)

∴ λ1,2 = 0± j
1√
LC

(16)

Now we will solve the differential equation using guess and check and start by guessing the following
solution:

~x =

[
IL

Vc

]
=

[
α1eλ1t +α2eλ2t

β1eλ1t +β2eλ2t

]
Then we take the derivative and evaluate at t = 0 to find d

dt~x(0)

d
dt
~x =

[
λ1α1eλ1t +λ2α2eλ2t

λ1β1eλ1t +λ2β2eλ2t

]
d
dt
~x(0) =

[
λ1α1 +λ2α2
λ1β1 +λ2β2

]
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and use the differential equation d
dt~x = A~x to get the following

d
dt
~x(0) = A~x(0) =

[
0 − 1

C
1
L 0

][
5 ·10−3

0

]
=

[
0

50·10−3

L

]

Lastly, we plug in the values for λ and solve the system of equations

α1 +α2 = 50 ·10−3

j
1√
LC

α1− j
1√
LC

α2 = 0

β1 +β2 = 0

j
1√
LC

β1− j
1√
LC

β2 =
50 ·10−3

L

Solving the system of equations, we get the following constants

α1 = 25 ·10−2
α2 = 25 ·10−3

β1 =
0.5
√

10
2 j

β2 =−
0.5
√

10
2 j

Therefore, the solution to the differential equation is[
IL(t)
Vc(t)

]
=

[
25 ·10−2e j

√
10·109t +25 ·10−2e− j

√
10·109t

0.5
√

10
2 j e j

√
10·109t − 0.5

√
10

2 j e− j
√

10·109t

]

We can simplify this using Euler’s Formula to get our final answer.2

[
IL(t)
Vc(t)

]
=

50 ·10−2 cos
(√

10 ·109t
)

0.5
√

10sin
(√

10 ·109t
)


Figure 1 plots the above solutions for the capacitor voltage and inductor current. This system is also called
an oscillator because the circuit produces a repetitive voltage waveform under the right initial conditions.

Figure 1: Voltage and Current response of LC Tank

2Remember that cos(θ) = e jθ+e− jθ

2 and sin(θ) = e jθ−e− jθ

2 j .
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From the above plots, we can see that when the capacitor is fully charged, the inductor has zero flux whereas
when the inductor has full flux, the capacitor is fully discharged. What does this imply about the energy
stored in the two components?

We know that, energy in the capacitor, Ec =
1
2CV 2 = 1.25× 10−11 sin2

(√
10×109t

)
and energy in the

inductor, EL = 1
2 LI2 = 1.25×10−11 cos2

(√
10×109t

)
. This shows that Etotal = Ec +EL = 1.25×10−11 is

constant across all time.

Figure 2 plots these energies. As it is clear, the total energy seems to be sloshing back and forth between the
inductor and capacitor.

Figure 2: Energy stored in Inductor and Capacitor. Notice the sum is constant.
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5 RLC Circuits and Higher Order Differential Equations
The LC tank we studied in the previous section was a very ideal case where we assumed there was no resistor
in the system. But this is rarely the case, and we will need to understand how adding this third component
will modify our differential equations.

Before t = 0, switch S1 is on while S2 is off. At t = 0, both switches flip state (S1 turns off and S2 turns on):

−
+Vs

t = 0

S1

t = 0S2

C

+ −
Vc

i R

+ −VR

L

+ −VL

First, let’s figure out the initial conditions. Since the system had been connected to the battery for a long
time, the capacitor would be at steady state meaning vc(0) = Vs and i(0) = 0A. From this, we can also
deduce that d

dt vc = 0. Next, let’s write our branch equations:

i =C
d
dt

Vc, VL = L
d
dt

i, VR = i ·R (17)

Vc +VL +VR = 0 (18)

Using the above equations, and substituting for i from Equation (17) when needed, we can describe our
system with the following differential equation:

d2Vc

dt2 +
R
L

dVc

dt
+

Vc

LC
= 0 (19)

Here we have chosen the second order differential equation as means of an example. As usual, we can solve
this differential equation by computing its eigenvalues and use any approach from before.3

λ
2 +

R
L

λ +
1

LC
= 0 (20)

λ =− R
2L
± 1

2

√(
R
L

)2

− 4
LC

(21)

Now depending on the values of R,L,C the eigenvalues change accordingly

• When R > 2
√

L
C , the system is overdamped and there are distinct purely real eigenvalues.

• When R < 2
√

L
C , the system is underdamped and the two eigenvalues are complex conjugates

• When R = 2
√

L
C , the system is critically damped and there is a single purely real eigenvalue.

3Guess and check, diagonalization, changing coordinates, we are no longer emphasizing the solving process rather we would
like to extrapolate information from the results.
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The term damping refers to a system’s ability to resist its natural oscillatory behavior. If R = 0, notice that
the RLC circuit reduces to the LC tank. As the value of R increases, we’ll notice the oscillations go away.
This is because the damping force is stronger than the system’s natural tendency to oscillate.

To illustrate of the effects of damping on our system, we plot the responses below for various R,L,C values.

When the system is underdamped, the response Vc(t) has oscillatory behavior whereas if the system is
overdamped or critically damped, there are no oscillations. In addition, notice that the critically damped
case converges to steady-state much quicker than the overdamped case. This is a very desirable in controls
engineering since we are able to reach steady state the quickest without any oscillations.
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6 Charging an RLC Circuit
Now that we have equipped ourselves with some knowledge on eigenvalues, we will take a look at the
nonhomogenous case. Consider the following circuit. Before t = 0, switch S1 is off while S2 is on. At t = 0,
both switches flip state (S1 turns on and S2 turns off):

−
+Vs

t = 0

S1

t = 0S2

C

+ −
Vc

i R

+ −VR

L

+ −VL

Firstly, we must find the initial conditions. Since the capacitor has been discharging for a long time, Vc(0) =
0 and iL(0) = i(0) = 0. Next, let’s write out the branch equations,

i =C
d
dt

Vc, VL = L
d
dt

i, VR = i ·R (22)

Vc +VL +VR = 0 (23)

Using the above equations, and substituting for i from Equation (17) when needed, we can describe our
system with the following differential equation:

d2Vc

dt2 +
R
L

dVc

dt
+

Vc

LC
=Vs (24)

A quick technique we can use to homogenize the above equation is a substitution of variables:4

x =Vc−Vs, hence d
dt x = d

dt Vc and d2

dt2 x = d2

dt2 Vc. Applying this substiution,

d2x
dt2 +

R
L

dx
dt

+
x

LC
= 0 (25)

Looking back, Equation (19) close resembles our above equation. Hence, we will find the same eigenvalues.

λ̃1 =−1010, λ̃2 = 5×1010 (26)

Solving our homogenous differential equation using our method of choice, we see that the solution is

x(t) =−5e−1010t + e−5×1010t =⇒ Vc(t) = 4−5e−1010t + e−5×1010t (27)

Then converting back to Vc using Vc = x+Vs, we see that

Vc(t) = 4−5e−1010t + e−5×1010t (28)

4We could’ve also guess and checked the solution Vc(t) = α1eλ1t +α2eλ2t + β where β is a constant. The substitution of
variables approach ensures that our eigenvalues λ̃ and λ are indeed the same.
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7 Damping Ratio (Optional)
We have continually referred to the term damping without giving it a formal definition. It is time to intro-
duce the meaning behind damping. For any second order differential equation of the form

d2x
dt2 +2ζ ωn

dx
dt

+ω
2
n x = 0 (29)

ζ is defined to be the damping ratio and ωn
5 is the natural frequency of the system.

Note that these constants will apply for physical systems outside the context of circuits as well. We will see
more of these examples in a later part of the course. However, for now in the context of RLC, the natural
frequency of the system is the frequency that the circuit oscillates at when undamped or ζ = 0. Recall that
this is the specific case of the LC tank and the natural frequency will be ωn =

1√
LC
.

This means that the damping ratio of an RLC circuit is ζ = R
2

√
C
L . Connecting this back to our eigenvalues,

notice that when 0 < ζ < 1, the response is underdamped whereas if ζ > 1, then the system is overdamped.
Now what happens when ζ = 1? We will finally answer the question of what happens when there is a single
real eigenvalue and the matrix representing the system is not diagonalizable.

7.1 Critical Damping
7.1.1 Repeated Eigenvalues

Our entire process of solving second order differential equations relied on the truth that a n×n matrix A has
n linearly independent eigenvectors. However, if we were to have repeated eigenvalues in our system, then
we cannot guarantee that A is diagonalizable. One example of a second order differential equation that is
nondiagonalizable when put into matrix form is

d2y
dt2 +6

dy
dt

+9y = 0 (30)

By picking state-variables x1(t) = y(t) and x2(t) =
dy
dt , we could set up the following system of differential

equations
d
dt
~x(t) = A~x(t) =

[
0 1
−9 −6

][
x1(t)
x2(t)

]
(31)

There is a single eigenvalue λ =−3 and the eigenspace of A+3I is

Nul(A+3I) = Nul

[
3 1
−9 −3

]
= α

[
1
3

]
(32)

which is one-dimensional. This was where we left off last time since our matrix was non-diagonalizable.

Concept Check: Why did we use diagonalization when solving a system of differential equations?
Solution: Our motivation behind diagonalization was to find a basis in which the matrix A was diagonal so
that we could decompose our system into n first order differential equations.

5The subscript ’n’ in ωn stands for "natural".
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However, does our system need to be diagonal for us to create n first order differential equations? What if
it was possible to pick a basis in which A had an upper-triangular representation?

d
dt

[
z1(t)
z2(t)

]
=

[
λ ?
0 λ

][
z1(t)
z2(t)

]
(33)

where ? is any nonzero value. At a first glance, we are not able to uncouple the equations to create two first
order equations. However, if were to solve these differential equations from the bottom up exactly like how
we performed back-substitution when row-reducing, what would happen?

This would mean we first solve d
dt z2(t) = λ z2(t) which has unique solution z2(t) = z2(0)eλ t . Now that we

have a solution z2(t), we can plug it back into our first differential equation!

d
dt

z1(t) = λ z1(t)+? · z2(0)eλ t (34)

Since z1(t) is a first order differential equation with an input u(t) = keλ t , referring back to Note 3, the
solution is z1(t) = z0eλ t + kteλ t .

7.2 But what is our basis?
At last we have developed a strategy on how to tackle the case in which A cannot be diagonalized. However,
we have yet to define the basis {~v1,~v2} that makes A have an upper-triangular representation. So we will
now define a basis to make A have an upper triangular representation. 6

(1) We will start by picking~v1 =~v where~v is our eigenvector of A.

(2) To form a basis for R2, our second vector~v2 can be any vector linearly independent to~v1. It follows
that since the null-space of A−λ I was one-dimensional, we can pick any vector ~v2 not in this null-
space.

(3) Since ~v1 and ~v2 form a basis, we can represent any vector in R2 using coordinates. For ease of
calculation, we pick~v2 such that (A−λ I)~v2 =~v1. This would mean that A~v2 =~v1 +λ~v2.

(4) In matrix form we can write this as AV =V Λ where Λ =

[
λ 1
0 λ

]
proving the existence of a basis V

in which A is upper-triangular.

To summarize, we have shown the existence of a basis V for which A has an upper triangular representation
and we have also derived a form for our solution

x(t) = α1eλ t +α2teλ t (35)

6We do this for a 2×2 matrix, but this can be extended to an arbitrary n×n matrix through induction. We will look at the n×n
case in a later note.
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