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EECS 16B Designing [nformation Devices and Systems 11
Fall 2020 UC Berkeley Note 6

Introduction

In the past couple of notes, we’ve developed a methodology to analyze the time behavior of circuits using
differential equations. We started with scalar differential equations and were able to build it up into higher
order differential equations. For a circuit with a large number of resistors, capacitors, and inductors, this
analysis can get very difficult when analyzing arbitrary input signals.

However, if we were to restrict our inputs to be sinusoidal currents and voltages, we will be able to create
a new procedure very similar to Nodal Analysis from EE16A. This is sometimes called frequency analysis
and it focuses on analyzing the steady-state behavior of circuits with sinusoidal inputs.

Sinusoidal inputs are very commonly used in the real world through contexts such as audio and WiFi. Un-
derstanding sinusoidal behavior will let us perform very powerful tasks such as filtering noise or designing
power transformers. One of the key ideas in this note will be to rephrase our problem in terms of frequency
instead of time.

1 Sinusoids

Before diving into any circuit analysis, let us define what it means to be sinusoidal. We say a function x(z)
is sinusoidal if it can be represented as x(t) = Acos(@t + ¢)

Let’s start by plotting the functionx(r) = A cos(wr)
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There are a couple properties of x(¢) that are immediately apparent from the figure. We call the maximum
value of x above the mean the amplitude (A), and the spacing between repetitions of the function the period
(T =27/ w).

In EE16B we will always use cosine references when talking about sinusoids. Note that sines and cosines are both “sinusoidal”
since sin(x) = cos(x— §).

—_
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However, there’s one other important property of sinusoids: their phase. Consider the function Y (1) =
Acos(ot+¢).

Here, ¢ represents the phase shift of Y with respect to X. As can be seen, a positive phase shift moves the
function to the left by that amount. In particular, notice that the sine and cosine functions are really the same
sinusoid, with each just the other after a 7r/2 radian phase shift in the appropriate direction.

2 Scalar Linear First-Order Differential Equations

Now going back to differential equations, let us recall what happens when we provide an exponential input
e* . For simplicity, consider the differential equation

d

Zox(0) = Ax(t) + u(1); x(0) = xo

where the input u(¢) is of the form u(r) = ke* where s # A.

From Note 3, we saw that the solution to this differential equation is of the form

_ _ k At le
x(t)—(xo s—l)e +s—7te’

What is interesting about this solution is that if A < 0 then the steady state of x(z) will be a scalar multiple
of u(t). Again, recall from Note 3 that the steady state only involved the ¢* term.

k
s—A

Xss(t) = e €))

But what about for complex A? We can try writing a complex A in the form A = ¢ + jo, we see that

elt — e(6+ja))t — Ol /Ot )

To further simplify this, we can apply Euler’s formula and see that
= | (cos(@r) + jsin(wr))| =|e

’ e)Lt ot ‘

The first term in the product is a real exponential, which we know decays to zero exactly when Re[A]| = ¢ <
0. The second term is a sum of two sinusoids that will always have a combined magnitude of 1.
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To summarize, the homogeneous response e*’ will decay to zero whenever Re[A] < 0. In the context of

circuits with resistors, capacitors, and inductors, we almost always have this condition satisfied. This means
for an exponential input of the form e, the steady state solution of the circuit will also be of the form e*.

3 Circuits with Exponential Inputs

For a large circuit involving resistors, capacitors, and inductors, if we tried to solve the circuit using dif-
ferential equations, every capacitor and inductor adds an extra derivative to the system making it difficult
to solve. However, let’s take a look at what happens in the special case that our circuit was driven by an
exponential input * for some constant s.

Consider a capacitor C within the circuit with a voltage different v.(¢) acrosss it and a current i.(r) flowing
through it:

@_{ ic(1)
1

ve(t)

If the circuit were driven by an exponential function e*, then at steady state, we know from our understand-
ing of differential equations that v.(¢) = Vet and i =1 e“ where V and I are some arbitrary scalars.

The voltage-current relation of a capacitor tells us that

_ d _ _ _ _
io(t)=1e" = Cavc(t) = C%Ve‘” =sCVe" = [=sC-V

Critically, note that the relation between I and V resembles that of Ohm’s law and has no time-dependence
- it is a purely linear equation.

Similar equations can be obtained (this is a useful exercise to do) for an inductor V =1 -sL and a resistor
V=I-R. Rewriting the capacitor relationship to be in the same form, we see V= I

This suggests that we can view capacitors, inductors, and resistors as all being smnlar. In effect, capacitors
and inductors just have s-dependent resistances that we will call s-impedances. The term impedance is a
generalization of resistance and is defined through the voltage-current ratio

7 =

~
= 3

In 16A, when we did all of our analysis with resistors, no differential equations arose. This was because of
Ohm’s Law V = IR. Using our new idea of impedances, we are going to extend Ohm’s Law to capacitors
and inductors so we can use all of our circuit analysis techniques from 16A.
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3.1 Deﬁning the Phasor

We were able to define s-impedances for any input of the form u(¢) = ¢*. However, how does this all relate to
our main goal of sinusoidal analysis? It turns out that sinusoids are a special case of exponential functions!

Now, in our circuit differential equations, our input u(z) was a sinusoid of the form
u(t) =Acos(ot + ¢)

Let’s see how we can rewrite them in terms of exponential functions. To do this, we can combine Euler’s
formula with the properties of complex conjugates to determine that

¢/® +e77% = (cosO + jsinB) + (cos @ — jsin@) = 2cos 6.

In other words, starting with two complex exponentials, we have pulled out a purely real sinusoid!

Now let’s see what happens if we use the same algebraic manipulations to express an arbitrary sinusoidal
voltage v(t) = Vpcos(ot + @) in terms of exponential functions.

1 ; 1 .
v(t) = Vocos(wt +¢) = EVoeJ(w”‘p) + EVoe_f(“’“"P)

Therefore, we can express an arbitrary sinusoid as a linear combination of two exponential functions! Notice
that the coefficients of the two exponential functions are complex conjugates of one another. Thus, we can
rewrite the above as?]

1 ‘6 l— .
v(t) = EVoefd’ef“” + EVoeJ‘Pe*J“”.

The Vpe/? term resembles the V term that we denoted as an arbitrary scalar in the previous section. We will
call this coefficient the phasor V representing v(¢) and denote it as

V = Vyel? 4)

The phasor is a complex scalar that is a different way to represent our sinusoid without using time. Based
on this definition of phasors, we see that our voltage v(r) can be written in the form

1~ . 1= .
V(t) == EVe](m + Eve—jwl‘ (5)

3.1.1 Linear Circuits Don’t Change Frequency

With a phasor, notice how we are representing a sinusoid by its amplitude and phase, but not frequency.
We are allowed to do this and choose to do so since linear circuits (resistors, capacitors, and inductors) will
never alter the frequency of a sinusoid.

Concept Check: Why does a linear circuit never alter the frequency of a sinusoid?
Solution: It comes from the fact that e* is an eigenfunction of the derivative operator. For s = j®, we will
always have an ¢/®' term and its conjugate e /' forming our sinusoid of frequency .

Based on this fact, in the next section, we look further into the definition of this phasor and how it relates to
our definition of s-impedances.

2Remember that ¢ /¢ = ¢/
3We use capital letters for phasors to distinguish them from time domain signals.
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4 Phasors

In principle, at this point we already know what to do when given a circuit with sinusoidal inputs all at the
same frequency. But it can be helpful to make sure that you understand the derivations.

We defined the phasor for a sinusoidal voltage v(z) = Vycos(wz + @) as V = Vpe/? and saw that linear circuits
will not change the frequency of a sinusoid. A linear circuit component will only affect the amplitude and
phase of a sinusoid so we deemed it sufficient to represent a sinusoid through this phasor representation.

While all the derivations can be done by writing cos(6) as a sum of complex exponentials, we can also say
that cos(8) = Re[e/?] to simplify our calculations.

Let’s look at a capacitor provided with the sinusoidal voltage v(¢) = Vp cos(®t + ¢ ) = Re[Ve/?'], as shown:

C
(1)

+ —
Vo cos ot

Now, by the capacitor current-voltage relationship, we know that

i) = C%v(t) _ c%me[vequ ©)
= C- e[V L0 = ReljorCV el @

dt
We see that the current is indeed still a sinusoid of frequency @, but the amplitude and phase have changed.

Now if we were to represent the current in terms of its phasor representation,
i(t) = Iycos(wt + 0) = Re[le/®] (8)

Looking back at Equation , it follows that I = (jwC)V.

In other words, having already shown that all steady state circuit quantities will be sinusoids with frequency
o, we now in fact can relate the phasors of the voltage across and the current through a capacitor by a ratio
that depends only on the frequency and the capacitance.

This is exactly the same as the s-impedance story we told earlier. Because of this, when dealing with
sinusoidal inputs at frequency @, we use s = + j@ and just call the s-impedance, the impedance. The + jw
is understood from context.

As before, this can be thought of as the “resistance” of a capacitor, since it relates the phasor representations

voltage and current over and through the element by a constant ratio. For a capacitor, the impedance is

1% 1
ZC: _ = =
I joC

The interesting fact is that the impedance for the capacitor is imaginary, but more on that later.

We will now quickly perform a similar analysis for inductors and resistors on the next page.
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Impedance of a Resistor

Imagine some resistor R as follows:

Let i(r) be represented by some phasor 1. Thus, by Ohm’s Law,
v(t) = i(t) - R = R-Re[le!®] )
— e |I-Rel®| (10)

so we may represent the output voltage with the phasor

V=IR,

so the impedance is clearly
Zg =R.

From this, we see that the impedance behaves very much like the resistance does, except that it generalizes
to other circuit components as well.

Impedance Of an IHdUCtOI'

Now, we will consider inductors. We’ve seen that any sinusoidal function can be represented by a phasor.
Since we know our steady state will a sinusoid with frequency @, we start with a sinusoidal current and
work in the opposite direction to calculate the impedance of an inductor.

Consider an inductor with voltage and current across it as follows:

Let i(r) be represented by some phasor I. The voltage-current relationship of an inductor tells us that

d d_. ~
V(1) = L i(t) = L e[l (11)
-d . -
= L-Rell /] = Re[joLle] (12)

so the voltage can be represented by the phasor
V = joLl.

Thus, the impedance of an inductor is
Z;, = joL.
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b Circuit Analysis

At this point, observe that we have essentially obtained “equivalents” to Ohm’s Law for inductors and
capacitors, using the impedance to relate their voltage and current phasors.

51 The Phasor Transform

What allowed us to do this was the underlying assumption that our voltages and currents were all sinusoidal.
Given a sinusoidal voltage or current u(¢) we could represent it as a phasor.

u(t) = Acos(wr +¢) = U = Ae? (13)

This is commonly referred to as the Phasor Transform. Given this phasor U , we could then solve for all
of our voltages and currents in our circuit in phasor form. But how would we convert our phasors back into
sinusoids as a function of time?

Remember that phasors are a representation of sinusoids and are just a complex scalar. Therefore, we can
define an Inverse Phasor Transform of the form

W = Be/® — w(t) = Bcos(wr + 6) (14)

5.2 How to do Circuit Analysis

How do we use our phasors? We provide a short guideline below on how to analyze a circuit using phasors.

1. Verify that the voltages and currents are indeed sinusoidal.

* Note: Phasor analysis only works on sinusoidal inputs!
2. Transform all voltages and currents to the “Phasor Domain.”

* Phasor Domain a world in which time does not exist and everything is a phasor.
3. Solve for all voltages and currents.

* You can use any KCL, KVL, Voltage Dividers, etc.

4. Bring all voltages and currents back to the “Time Domain” through the Inverse Transform.

5.3 The Evil Twin

Now the last remark we make about sinusoids v(r) = Vo cos(f 4 ¢), we defined the phasor as V = Vge/?
equipped to the exponential function ¢/®’. However, we also had the “evil twin” conjugate phasor and its
equipped exponential e /®". So we might ask why the conjugate phasor isn’t seen in our transform.

This is because the two phasors V and V are related by conjugation. If we were to alter the phasor ‘7,

we would also be altering V. So then you might ask, what is the purpose of this conjugate phasor? The
conjugate phasor and its equipped exponential e/’ exist and act as a shadow to V and ¢/“" to make our
sinusoid a real function. Note that the function e/®' has a real and imaginary part and hence, its imaginary
part can only be cancelled out by adding its conjugate.
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5.4 KCL with Phasors

We will now try to show that a sum of sinusoidal functions is zero if and only if the sum of the phasors
of each of those functions equals zero as well, to obtain a sort of “phasor-version” of KCL. Consider the
sinusoids represented by the phasors: 1,1, ..., 1,.

Let I (7) be the sinusoid represented by the phasor I.
Observe that

L+h+..+1 =0

— 1~ = ~
5(114-12-{—...—}-1”)&0”:0
1~ - L _
= Sh+h+. +L)e™+S(h+h+.. +h)e ™ =0
LA = .
= Z (1 e]wf+le—jwt> —0
L(t)+DL(t)+...+1,(1) =0,

so we have proved that a sum of sinusoids is zero if and only if the sum of their corresponding phasors is
zero as well. This result can be thought of as a generalization of KCL to phasors.

5.5 Circuit Example

Putting everything together, we have now successfully generalized all of our techniques of DC analysis to
frequency analysis. We can finally consider some basic circuits, to verify that our technique works correctly.

Consider a voltage divider, where instead of one resistor we introduce a capacitor, as follows:

R l(f)

—AW

u@f@ v ——C

Let u(t) = Vycos(ot + 5). We are interested in finding how the voltage v.(t) varies over time. Note that it
is possible to solve this problem using differential equations, but we will now take advantage of phasorsﬂ

Recall that we proved the voltage divider equation in the context of DC circuit analysis. However, that proof
carries over to the phasor domain in a straightforward manner. Thus, the phasor V, representing the voltage
v(t) can be represented in terms of the phasor U representing the supply voltage as follows:

_ Ze  ~
V.=
Zc+7Zg

)

where Z¢ and Zg are the impedances of the capacitor and resistor, respectively. Note also that, since the
supply is at frequency m, all other voltages and currents in the system will also be at the same frequency .

4We in fact try this in the Input Note, but recall how tedious the integral becomes.
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Thus, using our results from earlier, we know that

Zec=——,7Zr=R
C ‘]COC7 R

Substituting these values into our equation for V., we find that

1

‘TR T Tt jere "
_ WG aan(1,0R0) (16)

/12 + (wRC)?

Note that we have converted W into polar form This would be much easier to write out if we were

given component values and a frequency ®.

Lastly, we can convert this phasor back into the time-domain to obtain

Vo

12+ (wRC)?

ve(t) = cos (wt+72r—atan2(1,a)RC)> (17)

5.6 Phasors at DC

We’ve mentioned multiple times throughout this note that Phasor Analysis only works when the inputs are
sinusoidal. However, since 1 = ¢/¥, what would happen if we did Phasor Analysis on DC voltages and
currents? This fact seems to imply that DC voltages are “sinusoidal” with zero frequency so let us look at
the impedances of a capacitor and inductor for @ = 0.

Since the impedance of a capacitor is Z. = ja%C’ we see that a capacitor would have infinite impedance and
act as an open circuit. Similarly looking at an inductor at DC,

The impedance of the inductor would be Z; = 0 meaning an inductor would have zero impedance and acts
as a short circuit.

Remember that when using phasors, we were looking at the steady state behvaior of our circuit. In addition,
recall that for DC voltages, no current flows through the capacitor and inductors behave as shorts in steady
state. Therefore, performing phasor analysis with @ = 0 matches our intuition of what would happen with
DC inputs at steady state.

SRemember that for a complex number w = %, the magnitude |w| = % and the phase is Zw = £z — Zzo.
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