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EECS 16B Designing Information Devices and Systems II
Fall 2020 UC Berkeley Note 7

Introduction
In the previous note, we developed the method of Phasor Analysis to analyze the steady state behavior of
sinusoidal voltages and currents. In this note, we will consider some applications of these circuits, and begin
to explore techniques for designing these circuits to fit a set of requirements called a filter.

1 Transfer Functions
When analyzing circuits in the phasor domain, we have always told you what the input voltage to the circuit
was. However, sometimes we have many input sinusoids and we would like to see how the circuit generically
responds to a sinusoid input of frequency ω. We want to see how an input sinusoid “transfers” into an output
sinusoid. How do we do this?

Let’s start with a simple RC circuit.

vin(t)

R

C

+

−

vout(t)

In the phasor domain, the impedance of the capacitor is ZC = 1
jωC and the impedance of the resistor is

ZR = R. Because we treat impedances the same as resistances, this circuit looks like a voltage divider in the
phasor domain. This lets us write Ṽout as

Ṽout =
ZC

ZR +ZC
Ṽin =

1
jωC

R+ 1
jωC

Ṽin =
1

jωRC+1
Ṽin

The ratio of the output and input is called the transfer function or frequency response of the system.

H(ω) =
Ṽout

Ṽin
=

1
1+ jωRC

Note that a transfer function can only be defined in the phasor domain.

Now, given an arbitrary input sinusoid, if we multiply it by the frequency response, we can get the output
sinusoid. What this allows us to do is to model any arbitrary circuit as a single-input-single-output black
box. The transfer function completely defines how our circuit works at a given frequency ω. Let’s take a
look at some examples to understand what this means.
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2 First Order Filters
In this section, we will develop the concept of a filter using our knowledge of transfer functions. The key
idea here is that a filter lets signals at some frequencies through and will block out other frequencies.

2.1 Low-Pass Filters
Let’s say we had some high frequency noise greater than 100kHz in our input signal that we would like to
attenuate using a filter. If we were to design an ideal filter to get rid of this noise, we would like all frequen-
cies below 100kHz to be let through while blocking out any frequencies above 100kHz. Mathematically
this would mean H(ω) = 1 for all ω < 100kHz and H(ω) = 0 for ω ≥ 100kHz.

While designing this ideal filter is difficult, we could certainly design a low-pass filter using an RC circuit.

vin(t)

R

C

+

−

vout(t)

Recall from the previous example that

H(ω) =
1

1+ jωRC

Now how can we show that this filter is in fact a low-pass filter?

As a quick intuition check, if ω = 0, H(ω) = 1 and if ω → ∞, then H(ω)→ 0. Therefore, our filter seems
to behave as expected, but what happens in between 0 and ∞? Let’s take a look at a couple of values around
ωc =

1
RC .

ω H(ω)
∣∣H(ω)

∣∣ ∠H(ω)

0.1ωc
1

1+0.1 j
0.995 −6◦

ωc
1

1+ j
0.71 −45◦

10ωc
1

1+10 j
0.1 −84◦

This should show that ωc =
1

RC is a very important frequency to look at since this is around the frequency
where the behavior of the filter starts to qualitatively change.1 In fact, this is so important that we call this
the cutoff or corner frequency. Below this frequency, the filter seems to let everything through, while much
above this frequency, the filter blocks everything.

Mathematically the cutoff frequency, ωc, is defined as the point at which

H(ωc) =
maxω

∣∣H(ω)
∣∣

√
2

1Note how this is the reciprocal of the time constant. We’ll explore its significance in a later section.
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Where maxω H(ω) is the maximum magnitude of H(ω) over all frequency. For a passive circuit, one
without an external power supply, this maximum will usually be 1.

To give a visual understanding of our frequency response, we plot the magnitude and phase of the low-pass
filter below. We plot on a log-log scale and we’ll explore why this is the case in the next note.
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The above circuit was shown to be a low-pass filter, but there are a potpourri of other low-pass filter topolo-
gies and tradeoffs between each design. We won’t look into too many of these different examples, but
another example that we can analyze is an LR low-pass filter.

vin(t)

L

R

+

−

vout(t)

Try to compute its transfer function and find its cutoff frequency.2

2.2 High-Pass Filters
Now let’s say we were building a sound system but the bass was too strong. We would like to filter out lower
frequencies will keeping the remaining higher frequences the same. To do this, we should start thinking
about how we can build a high-pass filter.

vin(t)

C

R

+

−

vout(t)

2H(ω) = 1
1+ jωL/R ,ωc =

R
L
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All of our principles that we have developed in the previous section apply here as well, so let’s verify that
the following CR circuit is a high-pass filter.

H(ω) =
jωRC

1+ jωRC
=⇒ ωc =

1
RC

Note that the cutoff frequency is identical to a low-pass filter with the same RC value. Let’s look at some
values of H(ω) around ωc =

1
RC .

ω H(ω)
∣∣H(ω)

∣∣ ∠H(ω)

0.1ωc
0.1 j

1+0.1 j
0.1 84◦

ωc
j

1+ j
0.71 45◦

10ωc
10 j

1+10 j
0.995 6◦

Let’s plot the magnitude and phase of this transfer function to see how it behaves over all frequencies ω.
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Another example of a high-pass filter that we can look at is an RL filter

vin(t)

R

L

+

−

vout(t)

Try to compute its transfer function and find its cutoff frequency. 3

3H(ω) =
jωL/R

1+ jωL/R ,ωc =
R
L
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3 Second Order Filters
Using the intuition that we’ve gained from analyzing first order filters and their Bode plots, we will move
onto more complicated examples.

3.1 Band-Pass Filters
With the knowledge of low-pass filters that block out higher frequencies and high-pass filters that block out
lower frequencies, how could we build a filter that lets a range of frequncies through? One idea could be to
take the output of the low-pass filter and treat it as an input to the high-pass filter.

Ṽin

R1

C1
−

+ C2

R2

+

-

Ṽout

If we were to pick cutoff frequencies such that our desired range is smaller than our low-pass cutoff while
being larger than our high-pass cutoff, then we could compute the transfer function of the following circuit
and analyze its cutoff frequency.

The transfer function of this circuit is the product of the low-pass and high-pass transfer functions

HBP(ω) = HLP(ω) ·HHP(ω) =
1

1+ jωRLCL
· jωRHCH

1+ jωRHCH

To find the cutoff frequencies of this filter, we can look at the points at which H(ωc) =
1√
2
. However, recall

that ωLP = 1
RLCL

and ωHP = 1
RHCH

and assuming that the low-pass and high-pass frequencies are spaced apart,
we can approximate

∣∣H(ωL)
∣∣≈ 1√

2
·1 and

∣∣H(ωH)
∣∣≈ 1 · 1√

2
.

Therefore, we conclude by saying that the cutoffs for the band-pass filter are identical to the individual
cutoffs for the low and high-pass filter. We show a plot of H(ω) with ωLP = 10−6 and ωHP = 10−4 to give
a visual explanation of this idea.
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Now the band-pass filter that we built above requires the use of an op-amp. However, what would happen if
we instead cascaded the two filters causing a loading effect?

−

+

R1
C2

C1

−

+

Vmid R2

+

−

Vin Vout

We leave the derivation as an exercise, but computing the transfer function yields

H(ω) =
jωRHCH

(1+ jωRLCL)(1+ jωRHCH)+ jωRLCH

The difference due to loading is a denominator term of jωRLCH . Depending on how large RLCH this could
have a small or large effect on the circuit. We plot some examples of the band-pass filter with identical low
and high cutoff frequencies but different RLCH values to show this loading effect.
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Note how the maximum value of H(ω) decreases as RLCH increases. In addition, the cutoff frequencies
move further and further apart from the original ωLP = 1

RLCL
and ωHP = 1

RHCH
.
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4 Time Constant
When computing the cutoff frequency for a first order low-pass filter, we noticed that the ωc =

1
RC = 1

τ
. In

this final section of the note, we draw the connection between time constants and cutoff frequencies.

Recall from the note on differential equations that we defined the time constant of a first-order circuit to
be the point at which the response vc(t) to a constant input was 1− e−1 away from its steady state value.
With this in mind, let’s try plugging in an exponential input vin(t) =V0e jωt into an RC circuit and see what
happens. 4

vin(t)

R

C

+

−

vout(t)

The differential equation for this circuit is

d
dt

vout(t) = λ (vout(t)− e jωt) (1)

for λ =− 1
τ
. In Note 3 we showed that the steady state value of this differential equation is

vss(t) =
−λ

jω−λ
V0e jωt (2)

Therefore, plugging in for λ =− 1
τ
, it follows that

vss(t) =
1

1+ jωτ
V0e jωt (3)

Notice that H(ω) = 1
1+ jωτ

and the cutoff arises naturally as ωc =
1
τ
. We can also realize that at steady

state, H(ω) is in fact the eigenvalue for the differential equation with eigenfunction e jωt . This is a crucial
connection between differential equations and the frequency response of a linear system that you will see in
later half of the course and in courses like EE120.

5 Conclusion
In this note, we were able to apply the techniques of phasor analysis to build filters that followed a specific
set of constraints. Using a single resistor and a capacitor, we were able to build first-order low and high pass
filters. By combining the two with a buffer, we then developed the band-pass filter in order to let a range of
frequencies through.

To get a better understanding of our filters, we began to plot the magnitude and phase of the transfer func-
tion H(ω). In the next note, we’ll develop a better understanding of plotting and how to approximate the
magnitude and phase plots by taking advantage of the log-log scale.

4We should be inputting vin(t) =V0 cos(ωt) but we choose e jωt since it provides the same result while simplifying the math.
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