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EECS 16B Designing Information Devices and Systems II
Fall 2020 UC Berkeley Note 8

Introduction
In the last note, we developed fundamental techniques to design first and second-order filters by computing
a transfer function H(ω) and analyzing its behavior for various values of ω. To get a better understanding
of our circuits, we decided to plot the transfer function over various frequencies using numerical tools such
as Matlab or Python.

In this note, we will develop a methodology to approximate the behavior of our transfer function through
Bode plots. We will continue to emphasize the importance of approximating the behavior of our circuits.
Often times instead of trying to understanding the exact, precise behavior of a system, we look at an approx-
imation that is equally valid and gives us the perfect amount of information to make our design choices.

1 Rational Transfer Functions
When we write out the transfer function of an arbitrary circuit, it can always be expressed as a rational
transfer function of the following form.

H(ω) = K
N(ω)

D(ω)
= K

( jω)Nz0

( jω)Np0

(
( jω)n +αn−1( jω)n−1 + . . .+α1( jω)+α0

( jω)m +βm−1( jω)m−1 + . . .+β1( jω)+β0

)
(1)

= K
( jω)Nz0

(
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ωz1

)(
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)
· · ·
(
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)
( jω)Np0

(
1+ j ω

ωp1

)(
1+ j ω

ωp2

)
· · ·
(

1+ j ω

ωpm

) (2)

This follows from the Fundamental Theorem of Algebra which states that a degree n polynomial has n
complex roots. This rational form will help us tremendously when plotting.

1.1 Poles and Zeros
In the rational form shown above, we define constants ωz as zeros and ωp as poles. Note that in standard
literature, zeros are defined to be the roots of N(ω) while poles are the roots of D(ω).1 In addition to this,
we refer to the ( jω) term as a zero at the origin while 1

jω is a pole at the origin.

Note that pole and zero frequencies are a generalization of cutoff frequencies. Often times,
∣∣H(ω)

∣∣ at a pole
or zero will not be equal to 1√

2
. However, they are of utmost importance since they represent a point of the

transfer function where the behavior begins to change qualitatively. For this reason, you may see the term
break frequency in other literature which refers to the idea that the transfer function starts changing at pole
or zero frequencies.

1Technically if s = jω, then the roots of N(s) and D(s) are −ωz and −ωp. However, when plotting Bode plots, we refer to ωz
and ωp as the zero and pole frequencies.
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1.2 “Adding” Bode Plots
For two transfer functions H1(ω) and H2(ω), if H(ω) = H1(ω) ·H2(ω),

log
∣∣H(ω)

∣∣= log
∣∣H1(ω) ·H2(ω)

∣∣= log
∣∣H1(ω)

∣∣+ log
∣∣H2(ω)

∣∣ (3)

∠H(ω) = ∠(H1(ω) ·H2(ω)) = ∠H1(ω)+∠H2(ω) (4)

As a consequence, when plotting
∣∣H(ω)

∣∣ on a log scale, we can simply plot
∣∣H1(ω)

∣∣ and
∣∣H2(ω)

∣∣ and add
the two together. This implies that we will be able to add the slopes of each zero and pole to provide a
complete plot. In the next section we provide a further analysis on the meaning of zeros and poles and the
idea of adding slopes.

We must be careful, however, to note that in most of our plots, the x-axis does not correspond to 0, so we
can’t simply “stack” the two plots.

1.3 Decibels
We define the decibel as the following:

20log10(|H(ω)|) = |H(ω)| [dB]

The origin of the decibel comes from looking at the ratio of the output and input power of the system.

∣∣H(ω)
∣∣ [dB] = 10log

∣∣∣∣Pout

Pin

∣∣∣∣= 10log
∣∣∣∣Vout

Vin

∣∣∣∣2 = 20log
∣∣∣∣Vout

Vin

∣∣∣∣
Therefore, 20dB per decade is equivalent to one order of magnitude. We won’t be using dB when plotting,
but understanding the conversion to dB will help when reading other resources on Bode plots.

2 First Order Examples
Let us look back to the simplest example, a first-order RC low-pass filter with R = 1kΩ and C = 1nF.

vin(t)

R

C

+

−

vout(t)

You might recall that this circuit has the following transfer function

H(ω) =
1

1+ jωRC

Notice how this transfer function is already in the rational form mentioned in the previous section and that
is has a pole at ωp = 1

RC . Now based on this information, let’s take a look at various frequencies around
ωp =

1
RC = 106 and break it into cases:
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• If ω � ωp, then ω/ωp ≈ 0. Therefore H(ω)≈ 1 which implies
∣∣H(ω)

∣∣≈ 1.

• For ω = ωp, then H(ω) =
1

1+ j
meaning

∣∣H(ω)
∣∣= 1√

2
.

• Lastly if, ω � ωp, then ω/ωp� 1. Therefore H(ω)≈ 1
jω/ωp

=− jωp/ω which implies
∣∣H(ω)

∣∣≈
ωp/ω. Therefore, if we plot

∣∣H(ω)
∣∣ on a log scale, the magnitude will drop off with a slope of 1.2

Based on the analysis above, we can plot a straight-line approximation of H(ω) that is equal to 1 for
ω < ωp and then drops off with a slope of 1 for ω > ωp. We plot both the approximation and exact values
of
∣∣H(ω)

∣∣ below to see how precise our approximation is.

103 104 105 106 107 108 10910−4
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ω

|H
(ω

)|

Exact Plot
Approximation

The Bode approximation matches the true plot very accurately. The largest approximation error in the
straight-line plot occurs at the pole frequency ωp =

1
RC . We approximate

∣∣H(ω)
∣∣ as 1 when in reality, it is

equal to 1√
2
.

2.1 Single Zero
Now let’s take a look at another transfer function with a single zero at ωz = 106.

H(ω) = 1+ jω/ωz (5)

Note that it is impossible to implement this transfer function using a passive circuit since
∣∣H(ω)

∣∣→ ∞ as
ω → ∞. However, it is an important example as transfer functions can have a single zero and multiple poles
to cancel out the effect of the zero.

Let’s again analyze various frequncies around ωz and how they affect the value of
∣∣H(ω)

∣∣ .
• If ω � ωz, then ω/ωz ≈ 0. Therefore H(ω)≈ 1 which implies

∣∣H(ω)
∣∣≈ 1.

• For ω = ωz, then H(ω) = 1+ j meaning
∣∣H(ω)

∣∣=√2.

• Lastly if, ω � ωz, then ω/ωz � 1. Therefore H(ω) ≈ jω/ωz which implies that
∣∣H(ω)

∣∣ ≈ ω/ωz.
Therefore, we see that

∣∣H(ω)
∣∣ increases with a slope of 1 on a log scale.

2If you aren’t sure why this is the case, notice that log
∣∣H(ω)

∣∣= logωp− log(ω). Since the line y = mx+b, has a slope of m,
we can equate y = log

∣∣H(ω)
∣∣ , x = logω and b = logωp.
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Based on the analysis above, we can plot a straight-line approximation of H(ω) that is equal to 1 for
ω < ωz and then increases with a slope of 1 for ω > ωz. We again plot both the approximation and exact
values of

∣∣H(ω)
∣∣ to see how precise our approximation is.
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2.2 At the Origin
To plot a zero at the origin, notice that H(ω) = jω has magnitude ω and phase 90◦. If our transfer function
has a zero at the origin, it will start off with a slope of 1.
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To plot a pole at the origin, notice that H(ω) = 1
jω has magnitude ω and phase−90◦. If our transfer function

has a pole at the origin, it will start off with a slope of −1.
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Lastly, we show the plot of a constant K = 100. As expected, the plot remains constant. This implies that
multiplication by K will shift up the entire bode plot up by K.
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10−2

100

102

ω

|H
(ω

)|

3 Higher-Order Filters
Now that we understand how to plot first-order Bode plots, we’ll look at more complicated examples that
involve multiple poles and zeros. Remember that we are able to treat a higher-order Bode plot as the product
of multiple first-order Bode plots and “add” up our results together. The examples in this section should help
illustrate this idea.

3.1 High-pass Filter
Let us take another look at the first-order RC high-pass filter with R = 1kΩ and C = 1nF.

vin(t)

C

R

+

−

vout(t)

The transfer function of this circuit as you may recall is of the form

H(ω) =
jωRC

1+ jωRC
(6)

We can break this transfer function down into its rational form: A constant RC term, a single zero at the
origin, and a pole at ωp =

1
RC . Each individual component will contribute to the plot of H(ω) and we can

add all of their effects together.

H(ω) = RC · ( jω) · jωRC
1+ jωRC

(7)
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We first plot the magnitide Bode plot, then provide an analysis of each constituent component
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Exact Plot
Approximation

To provide an analysis for this Bode plot, we note that there is a constant, single zero, and single pole in that
exact order. The constant term K = RC = 10−6 shifts the entire plot down by 106. Since there is a single
zero at the origin, the plot must start with a slope of 1. Lastly, the pole at ωp = 106 will provide a slope of
−1 that cancels out with the current slope of 1 from the zero. Therefore, for ω > ωp, the net slope will be
zero and the plot remains constant.

3.2 Band-pass Filter
Recall the band-pass filter we designed in the previous note by cascading a low-pass and a high-pass filter.

H(ω) = HLP(ω) ·HHP(ω) =
1

1+ jω/106 ·
jω/104

1+ jω/104 (8)

The cutoff frequency for the high-pass is 104 while the cutoff for the low-pass is 106.

Following this procedure of adding plots (with the individual filters on the left and the result on the right),
we obtain
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3.3 Low-Pass Filters
From our analysis of low-pass filters, we saw that the magnitude of H(ω) drops off by a factor of 10 for each
decade of frequency after the cutoff ωc. While this functions as a low-pass filter, in the ideal case, we would
like to build a filter that drops off at a quicker rate after ωc. Therefore, let’s try cascading two low-pass filters
of identical cutoff with a buffer in between.

Ṽin

R

C −

+ R

C

+

-

Ṽout

We can compute the transfer function as

HLP(ω) =
1

(1+ jωRC)2 (9)

Plotting the magnitude of HLP(ω), we see that H(ω) does indeed drop off at a quicker rate with slope 2 after
the cutoff ωc.
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First Order
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In fact, if we were to cascade even more low-pass filters, we approach an ideal low-pass filter in which

H(ω) =

{
1 ω < ωc

0 ω ≥ ωc
(10)

We show a plot of this effect below. For an nth order filter, we see a dropoff of slope n after the cutoff. We
will explore this effect in more detail in the next note.
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When analyzing the Bode plot however, note that dropoff ocurrs before ωp =
1

RC . This is because each time
we cascade a low-pass filter, the magnitude drops off by a factor of 1√

2
at ωp. The Bode approximation is

unable to capture this behavior. If we wanted to build something closer to the ideal low-pass filter, we need
to shift 1

RC to be slightly greater than ωc. We show a plot below where we set ωp =
1

RC = 10−6.2.
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With this slight shift, we see a slight performance improvement, but it is quite expensive with all of the
op-amps especially at the n = 8 case. There are an entire class of different filter designs each with its own
tradeoffs. Some examples that you can look up are the Butterworth, Lattice, and Sallen-Key topologies.

4 More Examples
We provide more examples of transfer functions and their Bode plots to reinforce the idea of “adding” plots
and slopes together.

4.1 Transfer Function Example
Now let’s take a look at the Bode plot of a new transfer function.

H(ω) =
100(1+ jω)

( jω)2 +1010( jω)+104 (11)

We must first factor it into its rational transfer function form:

H(ω) = 0.01
(1+ jω)

(1+ jω/10)(1+ jω/103)
(12)
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With the transfer function in its rational form, we see that K = 0.01,ωz = 1,ωp1 = 10,ωp2 = 103.
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K = 0.01
ωz = 1
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ωp2 = 103

To provide an analysis for this Bode plot, we see that the plot starts off at K = 0.01. Then at ωz = 1, it starts
rising with slope 1. When it hits the pole at ωp1 = 10, the slope of 1 is cancelled out by the −1 slope that
the pole provides. Then the Bode plot stays constant until ωp2 = 103 at which it drops off with a slope of 1.
We’ve provided Bode plots of the individual terms to give you a sense of how we “add” Bode plots together.

4.2 Zero at the Origin
In our final example, we examine the effects of a zero at the origin. Consider the following transfer function
in rational form.

H(ω) = 0.1
( jω)(1+ jω/106)

(1+ jω/102)2 (13)
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Since there is a zero at the origin, the plot initially starts with a slope of 1. There are no additional zeros or
poles before ω = 1, so we can approximate

∣∣H(1)
∣∣= K = 0.1. Then the double pole at ωp = 102 provides a

slope of −2 cancelling with the current slope of 1 making the overall slope after ωp equal to −1. Lastly, the
zero at ωz = 106 provides an additional slope of 1 making

∣∣H(ω)
∣∣ remains constant after ωz.

5 Conclusion
All in all, Bode plots are a very powerful tool that let us approximate the behavior of a system without the
use of numerical tools. While that on its own may seem unsatisfying, it was quite remarkable how accurate
our approximations were.

In this note, we were developed a systematic approach to break down a transfer function as a product of its
constituent components: zeros and poles. By doing so, we saw the effect of each individual zero and pole
giving us a stronger understanding of how the two components interact and cancel out with each other. This
understanding also let us develop and further understand higher-order filters such as the band-pass filter and
nth order low-pass filter.

In the next note, we will look into more filters involving inductors and a new phenomenon where the Bode
approximation isn’t quite as accurate. However, we will see how to take advantage of this behavior to design
more powerful and interesting circuits.
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