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EECS 16B Designing Information Devices and Systems II
Fall 2020 UC Berkeley Note j

1 Introduction
Most students have some basic background in complex numbers (C) from high school. Traditionally, com-
plex numbers are introduced in order to motivate the existence of solutions to polynomial equations. We’ll
however, be taking a different approach and in following notes see how complex numbers play a crucial role
in modeling real world phenomena such as rotations, oscillations, and periodicity.

The purpose of this note is to solidify our understanding of complex numbers. Let’s begin with the most
basic definition: j =

√
−1. In most engineering discplines, we will use j, so as not confuse ourselves with

current or the identity matrix I.

2 Complex Numbers
Any complex number z ∈C can be represented in two form z = a+b j, where a is the real part and b is the
imaginary part. This form is referred to as rectangular form, and as we will see, addition in this form is
very easy and akin to vector addition.

The complex conjugate of z, represented by z (and sometimes by z∗), is defined as follows:

z = (a+b j) = a−b j (1)

The magnitude of a complex number, z, is given by

|z|=
√

a2 +b2 (2)

and the angle or phase is given by

θ = ∠z = atan2(b,a) (3)

Here, atan2(y,x) is a function1 that returns the angle from the positive x-axis to the vector from the origin to
the point (x,y).

2.1 Complex Plane
The complex plane lets us visualize complex numbers as vectors in a two dimensional space by adding
another independent axis to represent the purely imaginary numbers. As shown in Figure 1, a complex
number z = x+ jy has an intercept at x along the real axis and y along the imaginary axis. We can also see
visually that the magnitude of z is its distance from the origin, and the phase is the angle from the positive
real axis.

1See its relation to tan−1
(

y
x

)
at https://en.wikipedia.org/wiki/Atan2.
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Figure 1: Complex number z = a+b j depicted as a vector in the complex plane.

2.1.1 Warning in Advance

However, we must be careful with this visualization. While there is a 1-1 mapping from C to R2, the two
structures behave different algebraically. We’ll examine this behavior in the next part by looking at how
complex numbers add, multiply, and divide.

2.2 Basic Operations
Let’s say we have two complex numbers z1 = a1 + jb1 and z2 = a2 + jb2.

2.2.1 Addition

You may remember that the addition of complex numbers is defined as follows:

z1 + z2 = (a1 +a2)+ j(b1 +b2) (4)

The rules of addition and subtraction behave identically to vectors in R2. The complex numbers 1 and j act
as the standard basis vectors~e1,~e2 of R2.

2.2.2 Multiplication

Multiplication is a little more complicated. It behaves very similar to polynomial multiplication, except the
indeterminate (i.e. the variable) is replaced by j, and we have j2 = -1:

z1× z2 = (a1 + jb1)× (a2 + jb2) (5)

= a1 ∗a2 + jb1 ∗a2 + ja1 ∗b2 + j2b1 ∗b2 (6)

= (a1 ∗a2−b1 ∗b2)+ j(a1 ∗b2 +a2 ∗b1) (7)

This is where complex numbers begin to behave different from vectors in R2. Notice how this is much
different from say element-wise multiplication of the two vectors:

z1 =

[
a1
b1

]
z2 =

[
a2
b2

]
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2.2.3 Division

Before we move on to division, let’s see what the multiplicative inverse would look like:

1
z
=

1
a+ jb

=
1

a+ jb
× a− jb

a− jb

=
a− jb
a2 +b2 =

a
a2 +b2 − j

b
a2 +b2 (8)

Above, we multiply both the numerator and denominator by z. This allows us to make the denominator real,
and we also observe z× z = |z|2. Following the same train of thought, let’s define division as well:

z1

z2
=

a1 + jb1

a2 + jb2
(9)

=
(a1 + jb1)× (a2− jb2)

a2
2 +b2

2
(10)

=
(a1 ∗a2 +b1 ∗b2)− j(a1 ∗b2−a2 ∗b1)

a2
2 +b2

2
(11)

At line (10), we subsititute the multiplicative inverse found in (8), and we continue by carrying out the
multiplication as defined in (7).

3 The Polar Form
The polar form of z is a very important representation as it simplifies multiplication. The polar form of
z = a+ jb is given as follows:

z = re jθ

where r represents the magnitude |z| and θ represents the phase. This is an alternate way to represent the
same complex number z and the figure below compares polar and rectangular form side by side:
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Figure 2: Rectangular Form: z = a+b j
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Figure 3: Polar Form: z = re jθ

Multiplication in this form is given as:

z1× z2 = (r1e jθ1)× (r2e jθ2) = (r1 · r2)e j(θ1+θ2)

However, you may notice that addition is quite difficult in polar form. In the next part, we will look at how
to convert between polar and rectangular form.
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3.1 Euler’s Formula
One of the most important relationships in our study of complex numbers is Euler’s formula which says

e jθ = cos(θ)+ j sin(θ) (12)

We can extrapolate this formula by looking at Figure 3 and applying trigonometric relations.

Euler’s Formula lets us convert a complex number represented in polar form into rectangular form. The
figure below shows how to convert a complex number from polar to rectangular form and vice-versa.

Rectangular:
a+b j

r =
√

a2 +b2 θ = atan2(b,a)

a = r cos(θ) b = r sin(θ)

Polar: re jθ

Since addition is easier in rectangular form whereas multiplication is easier in polar form, we will often
switch between forms to make arithmetic operations more convenient.

3.2 Revisiting Multiplication
In thi section, we develop more intuition on how we can realize that complex multiplication is a rotation
operation, followed by scaling.

Let’s see how a complex number z = 1+ j0 changes as we multiply it with z1 = 1+ j =
√

2e j45◦ repeatedly:

Figure 4: Multiplying z (in blue) by z1 repeatedly

We can view multiplication by z1 as a rotation by ∠z1 = 45° followed by a scaling of |z1|=
√

2. This should
show the power of polar form when it comes to multiplication: We can view any complex number as a
rotation and scaling operation.
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4 Developing Euler’s Formula
In the last sections we stated,

z = re jθ . (13)

But what does e jθ even mean? It is a natural first step, from our experiences, to use the exponential’s
definition in the form of its Taylor’s expansion around 0 (or the Maclaurin’s expansion of ‘e·’):

z = re jθ (14)

= r

(
1+ jθ +

( jθ)2

2!
+

( jθ)3

3!
+ · · ·+ ( jθ)2n

2n!
+

( jθ)2n+1

(2n+1)!
+ · · ·

)
(15)

= r

(
1+ jθ − θ 2

2!
− j

θ 3

3!
+ · · ·+(−1)n θ 2n

2n!
+ j(−1)n θ 2n+1

(2n+1)!
+ · · ·

)
(16)

= r

(1− θ 2

2
+

θ 4

4
−·· ·+(−1)n θ 2n

2n!
+ · · ·

)
+ j

(
θ − θ 3

3
+ · · ·+(−1)n θ 2n+1

(2n+1)!
+ · · ·

) (17)

= r
(
cos(θ)+ j sin(θ)

)
. (18)

Here, θ = ∠z and the angles are clearly measured in radians. At (16), we used the fact that jk has a cyclic
pattern to it: j0 =+1, j1 =+ j, j2 =−1, j3 =− j, j4 =+1, and so it goes. Equating the first and last lines,
we get Euler’s Formula from the previous section.

Concept Check: Using Euler’s equation:

e jθ = cos(θ)+ j sin(θ) (19)

write sine and cosine as sums of complex exponentials.
Solution:

e− jθ = cos(−θ)+ j sin(−θ) = cos(θ)− j sin(θ) (20)

Adding and Subtracting equation (19) and (20), we get :

2cos(θ) = e jθ + e− jθ ⇒ cos(θ) =
e jθ + e− jθ

2
(21)

2 j sin(θ) = e jθ − e− jθ ⇒ sin(θ) =
e jθ − e− jθ

2 j
=
− je jθ + je− jθ

2
(22)

This is perhaps the most important fact about complex numbers that we’ll be using in the following notes.
Notice how we are able to sinusoidal function and decompose it into a sum of complex exponentials, both
of which represent complex numbers. This should give more insight on how complex numbers are able to
model oscillatory behavior.

We end our discussion of Euler’s Formula by bringing up the famous identity famous identity e jπ +1 = 0,
connecting five very fundamental numbers together: 0 (the additive identity), 1 (the multiplicative identity),
e (the base of the natural logarithm, defined because we want a function whose derivative was itself), j (the
basic imaginary number

√
−1), and π (the area of a perfect circle with radius 1).
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5 Useful Identities
Complex Number Properties

Rectangular vs. polar forms: z = x+ jy = |z|e jθ

where |z|=
√

zz =
√

x2 + y2, θ = atan2(y,x). We can
also write x = |z|cosθ , y = |z|sinθ .

Euler’s identity: e jθ = cosθ + j sinθ

sinθ =
e jθ − e− jθ

2 j
, cosθ =

e jθ + e− jθ

2

Complex conjugate: z = x− jy = |z|e− jθ

(z+w) = z+w, (z−w) = z−w

(zw) = zw,
(

z
w

)
=

z
w

z = z⇔ z is real

z =−z⇔ z is purely complex, i.e. no real part

(zn) = (z)n

Complex Algebra
Let z1 = x1 + jy1 = |z1|e jθ1 , z2 = x2 + jy2 = |z2|e jθ2 .

(Note: we adopt the easier representation between
rectangular form and polar form.)

Addition: z1 + z2 = (x1 + x2)+ j(y1 + y2)

Multiplication: z1z2 = |z1||z2|e j(θ1+θ2)

Division:
z1

z2
=
|z1|
|z2|

e j(θ1−θ2)

Power: zn
1 = |z1|ne jnθ1

z
1
2
1 =±|z1|

1
2 e j θ1

2

(Note: Just like square roots are not unique, other
fractional powers of z1 are not unique as well)

Useful Relations

−1 = j2 = e jπ = e− jπ

j = e j π
2 =
√
−1

− j =−e j π
2 = e− j π

2√
j = (e j π

2 )
1
2 =±e j π

4 =
±(1+ j)√

2

Concept Check: Verify the above identities for yourself if you have not done so in prior classes.

6 Conclusion
The polar form of z is a very important representation as it greatly simplifies multiplication. The polar form
of z = a+ jb is given as follows:

z = re j∠θ

We can also represent the conjugate of z is given as z = re− jθ since sin(−θ) = −sin(θ) while cos(−θ) =
cos(θ) from trigonometry.

When multiplying two complex numbers z1 and z2 in polar form, we multiply their magnitudes and add their
phase.

z1× z2 = (r1e jθ1)× (r2e jθ2) = (r1 · r2)e j(θ1+θ2)

In Section 3.2 we developed the intuition that multiplication by a complex number is a rotation operation
followed by scaling. Note that we are defining rotation by a positive number in a counter-clockwise direc-
tion. We will further explore this idea in the next bonus section when we create a matrix representation of
complex numbers and connect it to the rotation matrix from 16A.
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7 (Bonus) Complex Numbers modeled using Matrices
Viewing complex numbers as vectors definitely seems attractive and it does fit into our visualization of the
complex plane, but it has a major flaw — vectors do not naturally multiply, but complex numbers do. In
fact, multiplication is the raison d’etre for complex numbers. So, how do we get a better model? What both
adds and multiplies? Enter matrices, and more specifically scaled rotation matrices.

7.1 Matrix form of rotations
But first, what is a rotation matrix? To begin answering this question, we need to first understand what a

rotation tranformation would look like. Rotating the vector ~e1 =

[
1
0

]
by angle θ in the counter clockwise

direction would give us ~̃e1 =

[
cos(θ)
sin(θ)

]
, and similarly for ~e2 =

[
0
1

]
, we will get ~̃e2 =

[
−sin(θ)
cos(θ)

]
. Hence,

we can describe the rotation transform (by angle θ ) as the following matrix:

~̃v = Rθ~v =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
~v (23)

An important thing to note is this rotation matrix has orthonormal columns2. Next, what would happen if
we rotated a vector by θ1 and then by θ2? Well, it would be equivalent to rotating it by θ1 +θ2, hence we
have:

Rθ1 ∗Rθ2 =

[
cos(θ1) −sin(θ1)
sin(θ1) cos(θ1)

][
cos(θ2) −sin(θ2)
sin(θ2) cos(θ2)

]
=

[
cos(θ1 +θ2) −sin(θ1 +θ2)
sin(θ1 +θ2) cos(θ1 +θ2)

]
= Rθ1+θ2

(24)

Concept Check: Use basic trigonometry (in particular, the sum-angle formulas for sine and cosine that you
probably derived in high school) to check the equality established in equation (24). Futhermore, rotations in
2D are commutative3 as well. Show that this is true by proving Rθ1 ∗Rθ2 = Rθ2 ∗Rθ1

When we look back at rotation matrix in (23), it bears some resemblance to the Euler form (equation 18)
we discovered in the previous section. If we have a complex number z = a+ jb = cos(θ)+ j sin(θ), where
|z|= 1 (for simplicity, we will look at scaling a bit later) and ∠z = θ , then we could define a matrix Z(a,b) as
follows:

Z(a,b) =

[
a −b
b a

]
(25)

Concept Check: Check that this matrix has orthogonal columns.

We can express the fundamentally two-dimensonal nature of such matrices by expressing them using a clear
basis:

Z(a,b) = aI +bJ where I =

[
1 0
0 1

]
and J =

[
0 −1
1 0

]
. (26)

2The columns in a matrix with orthonormal columns all have norm 1 and are mutually orthogonal to each other (i.e. their inner
products with each other are zero). Such matrices are commonly referred to as orthogonal matrices in the mathematical literature.

3This commutative property for rotations only holds for 2D spaces, and not for 3D spaces. Take a second to think about this!
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Notice that J2 =−I above, and so the matrix J acts like the counterpart of the basic imaginary number j.

What is a complex conjugate in this representation? What can we do to swap the b and −b in the matrix
above? Indeed we see that transposing the matrix corresponds to complex conjugation of the underlying
complex number. It has no effect on a scaled identity matrix which would correspond to a purely real
number. But JT =−J.

Next, let’s look at the scaling. In this case, we have z = a+ jb, with |z| =
√

a2 +b2. To account for this in
our matrix model, we can factor out |z| as follows:

Za,b =
√

a2 +b2

[
a√

a2+b2 − b√
a2+b2

b√
a2+b2

a√
a2+b2

]
(27)

Looking at the above form, the factor out in the front is responsible for the scaling. From the figure below,
we can find θ = atan2(b,a) such that cos(θ) = a√

a2+b2 and sin(θ) = b√
a2+b2 .
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Now, let’s see if this model fits with everything that we know about complex arithmetic.

7.1.1 Addition:

For two complex numbers, z1 = a1 + jb1 and z2 = a2 + jb2, we have:

Z(a1,b1)+Z(a2,b2) =

[
a1 +a2 −(b1 +b2)
b1 +b2 a1 +a2

]
= Z(a1+a2,b1+b2)

Hence, it satisfies our definition of addition.

7.1.2 Multiplication by real number:

Let z = a+ jb, then λ z = λa+ jλb, where λ is a real number. This can be easily extended to our matrix
form as well:

λZ(a,b) = λ

[
a −b
b a

]
=

[
λa −λb
λb λa

]
= Z(λa,λb)
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7.1.3 Multiplication by a complex number:

Finally, and the reason we are pursuing this representation, multiplication by another complex number. Let
z1 = a1 + jb1 and z2 = a2 + jb2, then we have z1× z2 = (a1 ∗a2−b1 ∗b2)+ j(a1 ∗b2 +a2 ∗b1). Let’s check
if this is the case with matrix multiplication:

Z(a1,b1) ∗Z(a2,b2) =

[
a1 −b1
b1 a1

][
a2 −b2
b2 a2

]
=

[
a1 ∗a2−b1 ∗b2 −(a1 ∗b2 +a2 ∗b1)
a1 ∗b2 +a2 ∗b1 a1 ∗a2−b1 ∗b2

]
= Z(a1a2−b1b2,a1b2+a2b1)

Note that since our 2D rotations are communtative, so are the multiplications with complex numbers.

Multiplication by the complex conjugate also clearly gives an identity matrix with the magnitude squared
along the diagonal.

It turns out, although we will not show this here, that even the natural generalization of exponentiation to
matrices works with this matrix model for complex numbers. We get ea+ jb = eae jb = ea(cosb+ j sinb).
Actually, the understanding of the natural generalization of exponentiation to matrices requires understand-
ing the solutions to systems of differential equations, where the complex exponentiation case turns out to
represent the behavior of RLC circuits. To understand this requires understanding the eigenvalues of the
kinds of matrices we find here, but that is a subject of a different note.
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