Discussion 10B

Geometry of the SVD
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Recap

The Singular Value Decomposition of an mxn matrix A with rank r is:
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Each term ocuv.’ isa rank 1 matrix.

e Vectors u, are orthonormal and called left-singular vectors.
e Scalars o, are non-negative and called singular values.

e Vectorsv, are orthonormal and called right-singular vectors.



Full SVD

We can also write out the SVD as a product of matrices:
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U = [U, U,]isan m x m square matrix with orthonormal columns.
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0 0 ] is an m X n matrix and S is an r x r diagonal matrix.
(m-r)xr (m-r)x(n-r)

V: [V1 Vz] is an n X n square matrix with orthonormal columns.




Computing the Full SVD bt (F m<n
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We can compute the SVD through the following procedure: ~ ther ## \‘;L\,j:v
1. Compute eigenvalues and eigenvectors (&, v,) of é_T_é m;:‘, . ::J:F (N u)
2. The singular values 6.= /). T
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3. Compute left-singular vectors Uj = >
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4. Fori>r, 6.=0 and vectors u. and v, span the Nul A and Nul A,
a. In other words, we can compute u, by finding an orthonormal basis for

the null-space of A" and v, from the null-space of A
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Full SVD ot ory"

The@and @matrices are square and have orthonormal columns.
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An orthonormal transform rotates a vector x. A rotation does change the norm

of a vector. H XH _ H MXH




Full SVD

Since A = UXVT we can view A as three operations:

A is alinear transformatlon that maps vectors x toy = Ax = UEVTx

A= TER'

1. VT rotates the vector x X (P\ Q — e

2. ¥ scales the vector VTx
3. U rotates TVTx lVT
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