EECS 16

Logo credits go to Moses Won

Discussion 10B

Geometry of the SVD

Recap

The **Singular Value Decomposition** of an mxn matrix A with rank r is:

$$A = \sigma_1 \vec{u}_1 \vec{v}_1^T + \dots + \sigma_r \vec{u}_r \vec{v}_r^T = \sum_{i=1}^r \sigma_i \vec{u}_i \vec{v}_i^T + \dots + \sigma_r \vec{u}_r \vec{v}_r^T = \sum_{i=1}^r \sigma_i \vec{u}_i \vec{v}_i^T$$

Each term $\sigma_i \mathbf{u}_i \mathbf{v}_i^T$ is a rank 1 matrix.

- Vectors **u**_i are orthonormal and called **left-singular vectors**.
- Scalars σ_i are non-negative and called **singular values**.
- Vectors v_i are orthonormal and called right-singular vectors.

Full SVD

We can also write out the SVD as a product of matrices:

$$A = U_1 S V_1^T$$

Full SVD

 $\mathbf{U} = [\mathbf{U}_1 \ \mathbf{U}_2]$ is an $\mathbf{m} \times \mathbf{m}$ square matrix with orthonormal columns.

$$\mathbf{\Sigma} = \begin{bmatrix} S_{r \times r} & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix} \text{ is an } \mathbf{m} \times \mathbf{n} \text{ matrix and } \mathbf{S} \text{ is an } \mathbf{r} \times \mathbf{r} \text{ diagonal matrix.}$$

 $V: [V_1 \ V_2]$ is an $n \times n$ square matrix with orthonormal columns.

Computing the Full SVD

We can compute the SVD through the following procedure:

- 1. Compute eigenvalues and eigenvectors $(\lambda_i, \mathbf{v}_i)$ of $\underline{\mathbf{A}}^T \mathbf{A}$.
- 2. The singular values $\sigma_i = \sqrt{\lambda_i}$
- 3. Compute left-singular vectors $\mathbf{u_i} = \frac{\mathbf{A}\mathbf{v_i}}{\sigma_i}$ Here $\mathbf{A}\mathbf{v_i} = \sigma_i \mathbf{u_i}$ to $\sigma_i = \sigma_i \mathbf{v_i}$

but if
$$m < n$$

then AAT will be
more computationally
efficient, (λ_i, u_i)

$$V_i = \frac{A^Tu_i}{\sigma_i}$$

- 4. For i > r, $\sigma_i = 0$ and vectors \mathbf{u}_i and \mathbf{v}_i span the Nul A and Nul \mathbf{A}^T .
 - a. In other words, we can compute $\mathbf{u_i}$ by finding an orthonormal basis for the null-space of $\mathbf{A^T}$ and $\mathbf{v_i}$ from the null-space of \mathbf{A}

Full SVD

"unitary"

The U and V matrices are square and have orthonormal columns.

An orthonormal transform **rotates** a vector **x**. A rotation does change the norm of a vector. $|| \chi || = || \mathcal{K} \chi ||$

Full SVD

Since $A = U\Sigma V^T$ we can view A as three operations:

A is a linear transformation that maps vectors \mathbf{x} to $\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T}\mathbf{x}$

- 1. V^T rotates the vector \mathbf{x}
- 2. Σ scales the vector $\mathbf{V}^{\mathrm{T}}\mathbf{x}$
- 3. U rotates $\Sigma V^T x$

