EECS 16

Logo credits go to Moses Won

Discussion 14B

Course Recap

Circuits

PMOS / NMOS Transistors (Digital Circuits):

Underlying Circuit Model was an RC Circuit.

Linear Algebra & Differential Equations

Differential equations were the language to model systems.

$$\frac{dx}{dt} + ax = 0$$

$$\chi(0) = \chi_0$$

$$\chi(t) = \chi_0 e^{-at}$$
We used Linear Algebra to solve any **linear** differential equation

We used Linear Algebra to solve any linear differential equations.

$$\frac{d}{dt}x(t) = \lambda x(t) + u(t) \qquad \frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}$$

$$\vec{\chi}(t) = \alpha_i e^{\lambda_i t} \vec{v}_i + \dots + \alpha_n e^{\lambda_n t} \vec{v}_n$$

Changing Coordinates / Domains

If a problem is difficult, we can always change the problem: + o make it easier

Controls

We first had to understand how systems behave through the State-Space Model

Controls

Once we understood how systems could behave, we were able to control them.

If the system is controllable, we can reach anywhere in our state-space.

- More importantly, we can also pick all of the eigenvalues of our system using **feedback control**.
- This lets us control the **shape** of our response.

SVD & Optimization

The SVD let us decompose a matrix into its most important parts:

$$A = \sigma_1 \vec{u}_1 \vec{v}_1^T + \ldots + \sigma_k \vec{u}_k \vec{v}_k^T = \sum_{i=1}^k \sigma_i \vec{u}_i \vec{v}_i^T$$

How can we minimize / maximize some cost subject to constraints?

How can we minimize / maximize some cost subject to constraints?

$$\min_{\vec{x} \in \mathbb{R}^n} ||\vec{x}||^2 \text{ subject to } A\vec{x} = \vec{y} \qquad \max_{\{\vec{x}: ||\vec{x}|| = 1\}} ||A\vec{x}|| \qquad ||U \leq V^T \vec{x}||$$

$$\vec{x} ||\vec{x}|| = 1 \qquad ||A\vec{x}|| \qquad ||A$$

and least

Signals and Systems

Most real world systems can be modeled through an input/output box model:

Interfacing between CT and DT:

What's Next?

If you liked the circuits portion:

- Transistors: EE 105 (Microelectronic Circuits), EE 140 (Analog Design)
- Device Physics: EE 130s (Device Physics)
- Digital Circuit Design: CS 61C, EECS 151 (Digital Design & IC)
- Power Electronics: EE 137A/B (Power Systems)

What's Next?

Controls: EE 120 (Signals & Systems), EE 128 (Control Systems)

Robotics: EECS 106A/B, EE 128, EE 192 (Mechatronics Lab)

Optimization / Linear Algebra: EE 127 (Optimization)

Machine Learning: EE 126 (Probability) / Prob 140, <u>Data 100</u>, EE 127

Digital Signal Processing: EE 120 (Signals & Systems), EE 123 (DSP), EE 126

Math: Math 110 (Linear Algebra), Math 104 (Real Analysis), Math 123 (Ordinary Differential Equations), Math 185 (Complex Analysis)