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EECS 16B Fall 2020 Discussion 2B

1 RC Circuits

In this problem, we will be using differential equations to find the voltage across a capacitor over
time in an RC circuit. We set up our problem by first defining three functions over time: �(C) is the
current at time C, +(C) is the voltage across the circuit at time C, and +⇠(C) is the voltage across the
capacitor at time C.

Recall from 16A that the voltage across a resistor is defined as +' = '�' where �' is the current
across the resistor. Also, recall that the voltage across a capacitor is defined as +⇠ = &

⇠ where & is
the charge across the capacitor.

�
++(C)

=0

=1
' �'(C) =2,+⇠(C)

⇠

�⇠(C)

Figure 1: Example Circuit

a) First, find an equation that relates the current through the capacitor �⇠(C) with the voltage
across the capacitor +⇠(C).

b) Using nodal analysis, write a differential equation for the capacitor voltage +⇠(C). Note that
this is also the voltage for the node =2.
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c) Let’s suppose that at C = 0, the capacitor is charged to a voltage +⇡⇡ (+⇠(0) = +⇡⇡). Let’s also
assume that +(C) = 0 for all C � 0.

' �(C) +⇠(C)

⇠

Figure 2: Circuit for part (d)

Solve the differential equation for +⇠(C) for C � 0.
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d) Now, let’s suppose that we start with an uncharged capacitor +⇠(0) = 0. We apply some
constant voltage +(C) = +⇡⇡ across the circuit. Solve the differential equation for +⇠(C) for
C � 0.

�
+ +⇡⇡

' �(C) +⇠(C)

⇠

Figure 3: Circuit for part (e)
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d) Now, let’s suppose that we start with an uncharged capacitor +⇠(0) = 0. We apply some
constant voltage +(C) = +⇡⇡ across the circuit. Solve the differential equation for +⇠(C) for
C � 0.

�
+ +⇡⇡

' �(C) +⇠(C)

⇠

Figure 3: Circuit for part (e)
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Alternate Sol :
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Define a new variable
Then
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2 Graphing RC Responses

Consider the following RC Circuit with a single resistor ', capacitor ⇠ , and voltage source +(C).

�
++(C)

' �(C) +c(C)

⇠

Figure 4: Example Circuit

a) Let’s suppose that at C = 0, the capacitor is charged to a voltage +⇡⇡ (+c(0) = +⇡⇡) and that
+(C) = 0 for all C � 0. Plot the response +c(C).

b) Now let’s suppose that at C = 0, the capacitor is uncharged (+c(0) = 0) and that +(C) = +⇡⇡ for
all C � 0. Plot the response +c(C).
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- Ect
-

we can plot this on a graphing calculator
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To better understand our responses, we now define a time constant which is a measure of how
long it takes for the capacitor to charge or discharge. Mathematically, we define � as the time at
which +⇠(�) is 1

4 = 36.8% away from its steady state value.

Figure 5: Different values of capacitor voltage at different times, relative to �.

c) Suppose that+⇡⇡ = 5V, ' = 100⌦, and ⇠ = 10µF. What is the time constant � for this circuit?

d) Going back to part (b), on what order of magnitude of time (nanoseconds, milliseconds, 10’s of
seconds, etc.) does this circuit settle (+c is > 95% of its value as C ! 1)?

5

Let's take the discharging case from part ca) .
By definition I is the time at which Vcc -4 = VI .

We can solve for T as follows :

÷¥ "et't :c ! . !
""

-
- ma

- Tpc = In ( te ) = - I -7 T - RC = 1ms
or 0.00 IS

.

Looking at the graph above, it will take
3T to reach 95% of the steady state value .

Since I = RC = 1ms
,

it will take 3ms to reach

within O - 95 Vpp .
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e) Give 2 ways to reduce the settling time of the circuit if we are allowed to change one component
in the circuit.

f) Suppose we have a source +(C) that alternates between 0 and +⇡⇡ = 1V. Given '⇠ = 0.1 s,
plot the response +c if +c(0) = 0.

1 2 3 4

0.5

1

Time (s)

Vo
lta

ge
(V

)

g) Now suppose we have the same source +(C) but '⇠ = 1 s, plot the response +c if +c(0) = 0.

6

F- RC
.

To reduce the time constant , we should

either decrease R or decrease C
.
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,
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.
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and we wait lot before
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Here F- Is meaning after Is we will only reach 63% of Vpp .

Note that 63% = l - te .
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