

Logo credits go to Moses Won

Discussion 2B

Differential Equations & RC Circuits

Differential Equations

What are they?

A differential equation relates a function x(t) and its derivatives.

Examples:

•
$$\frac{\partial x}{\partial t} = \lambda x$$

•
$$\chi' + 4\chi = \cos t$$

•
$$\frac{\partial x}{\partial t} = \lambda x$$
 • $\chi' + 4x = \cos t$ • $\chi'' + 6x' + 9x = \sin x$
• $\chi'(t) = 4x(t) + 7$ • $\chi'' + 6x' + 9x = 0$ • $\frac{\partial x}{\partial t} = 4x' + 6$ • $\frac{\partial x}{\partial t} = \frac{\partial y}{\partial t}$

•
$$\chi'(t) = 4x(t) + 7$$

•
$$\chi'' + 6\chi' + 9\chi = 0$$

$$\bullet \quad \int_{\mathcal{T}} \vec{x} = A\vec{x} + \vec{b}$$

•
$$\frac{\partial Q}{\partial t} = c \rho \frac{\partial y}{\partial t}$$

The Solution:

The **solution** of a differential equation is a function x(t) such that the equation is true for all values of t.

Differential Equations

First Order Differential Equations

• A **first order** differential equation only involves a function x(t) and its first derivative x'(t).

Examples:

$$\frac{dx}{dt} = \lambda x$$
, $\frac{dx}{dt} = ax + b$, $\frac{dx}{dt} + ax = f(t)$

Initial Conditions

• The **initial conditions** of a differential equation lets us solve for a particular instance of the solution.

$$\chi(0) = \chi_0 \in Some constant$$

Two Important Examples

•
$$x'(t) = 3 x(t); x(0) = 5$$

 $\lambda = 3$, guess $x = |x|e^{3t}$
 $\chi(t=0) = |x|e^{3\cdot 0} = |x|e^{0} = |x| = 5$
 $\chi = 5e^{3t}$

•
$$x'(t) = -2 x(t) + 4; x(0) = 3$$

 $K_{Now}: -2K_{1}e^{2t} = -2K_{1}e^{-2t} - 2K_{2} + 4$
 $0 = -2K_{2} + 4 - 7 K_{2} = 2$
 $\chi(t) = K_{1}e^{-2t} + 2$
 $\chi(t=0) = K_{1} + 2 = 3 - 7 K_{1} = 1$
 $\chi(t) = e^{-2t} + 2$

Guess:
$$\chi(t) = K e^{\lambda t}$$
 arbitrary
constant
Check: $\chi'(t) = K \lambda e^{\lambda t}$
 $= \lambda K e^{\lambda t$

Common Solutions

Let's take a look at the first order differential equation: $\mathbf{x}'(\mathbf{t}) + \mathbf{a} \mathbf{x}(\mathbf{t}) = \mathbf{b}$

- If b = 0, this is called a **homogeneous** differential equation.
 - Given x(0) = k, the solution is $x(t) = k e^{-at}$

Guess
$$\chi(t) = A e^{\lambda t}$$

$$A = k$$
 $\chi(0) = k$
 $\chi(0) = \chi(0) = 0$

• If $b \ne 0$, this is called a **non-homogeneous** differential equation.

O Given
$$x(0) = k$$
, the solution is $x(t) = \chi(0) e^{-at} - \frac{b}{a} (e^{-at} - 1)$

Guess: $\chi(0) = k$, the solution is $x(t) = \chi(0) e^{-at} - \frac{b}{a} (e^{-at} - 1)$

$$= (\chi(0) - \frac{b}{a}) e^{-at} + \frac{b}{a}$$

Uniqueness

Given a first order differential equation: $\mathbf{x}'(\mathbf{t}) + \mathbf{a} \mathbf{x}(\mathbf{t}) = \mathbf{b}$

- If we are given an initial condition x(0) = k, then there will always be a unique solution x(t)= $\left(\chi(b) - \frac{b}{a}\right) e^{-at} + \frac{b}{a}$
- The proof is hard, and we took it out of the HW for this sem.

When your solution isn't unique ->

EECS 16B Fall 2020 Discussion 2B

1 RC Circuits

In this problem, we will be using differential equations to find the voltage across a capacitor over time in an RC circuit. We set up our problem by first defining three functions over time: I(t) is the current at time t, V(t) is the voltage across the circuit at time t, and $V_C(t)$ is the voltage across the capacitor at time t.

Recall from 16A that the voltage across a resistor is defined as $V_R = RI_R$ where I_R is the current across the resistor. Also, recall that the voltage across a capacitor is defined as $V_C = \frac{Q}{C}$ where Q is the charge across the capacitor.

Figure 1: Example Circuit

a) First, find an equation that relates the current through the capacitor $I_C(t)$ with the voltage

a) First, find an equation that relates the current through the capacitor
$$I_C(t)$$
 vaccoss the capacitor $V_C(t)$.

 $V_C(t) = \frac{\partial Q}{\partial t} = \frac$

b) Using nodal analysis, write a differential equation for the capacitor voltage $V_C(t)$. Note that this is also the voltage for the node n_2 .

EECS 16B Fall 2020 Discussion 2B

c) Let's suppose that at t = 0, the capacitor is charged to a voltage V_{DD} ($V_C(0) = V_{DD}$). Let's also assume that V(t) = 0 for all $t \ge 0$.

Figure 2: Circuit for part (d)

V(t) = 0 for all t ≥ c

Solve the differential equation for $V_C(t)$ for $t \ge 0$.

Know:
$$\frac{dV_c}{dt} + \frac{1}{Rc}V_c(t) = \frac{V(t)}{Rc} = 0$$

$$V_c(0) = V_{DD}$$

Given
$$\frac{\partial x}{\partial t} + \alpha x = 0$$

 $\chi(t) = \chi(0)e^{-\alpha t}$

Plugging in
$$\alpha = \frac{1}{RC}$$
, $\chi(o) = V_{ob}$, we see that $V_{c}(t) = V_{po} e^{-\frac{1}{Rc} \cdot t}$

2

EECS 16B Fall 2020 Discussion 2B

d) Now, let's suppose that we start with an uncharged capacitor $V_C(0) = 0$. We apply some constant voltage $V(t) = V_{DD}$ across the circuit. Solve the differential equation for $V_C(t)$ for $t \ge 0$.

Figure 3: Circuit for part (e)

$$\frac{dV_{c}}{dt} + \frac{1}{Rc} V_{c}(t) = \frac{V_{c}(t)}{Rc} = \frac{V_{op}}{Rc}$$

$$= \chi(0) = \frac{at}{a} + \frac{b}{a}$$

$$= \chi(0) e^{-at} - \frac{b}{a} (e^{-at} - 1)$$

$$= (0) \cdot e^{-\frac{1}{Rc}t} - \frac{V_{op}}{Rc} (e^{-\frac{1}{Rc}t} - 1)$$

$$= V_{op} (e^{-\frac{1}{Rc}t} - 1)$$

$$= V_{op} (1 - e^{-\frac{1}{Rc}t})$$

Note: There's an alternate method to solving diff-egs called substitution of vars. EECS 16B Fall 2020 Discussion 2B

d) Now, let's suppose that we start with an uncharged capacitor $V_C(0) = 0$. We apply some constant voltage $V(t) = V_{DD}$ across the circuit. Solve the differential equation for $V_C(t)$ for $t \geq 0$.

Alternate Sol:

Figure 3: Circuit for part (e)

$$\frac{dV_c}{dt} = -\frac{1}{RC} V_c + \frac{V_{00}}{RC} V_c(0) = 0$$

Define a new variable Then
$$\chi = V_c - V_{DD}$$
 and
$$-\frac{1}{Rc} x = -\frac{1}{Rc} \left(V_c - V_{DD} \right)$$
 This means
$$\frac{dV_c}{dt} = -\frac{1}{Rc} V_c + \frac{V_{DD}}{Rc}$$
 can be rewritten as
$$\frac{dX}{dt} = -\frac{1}{Rc} \chi$$
. This has solution
$$\chi(t) = \chi(0) e^{-\frac{1}{Rc}t}$$

$$-\frac{1}{Rc} \chi$$

This means
$$\frac{dV_c}{dt} = -\frac{1}{RC}V_ct\frac{DD}{RC}$$
 can be rewritten as
$$\frac{dx}{dt} = -\frac{1}{RC}X$$
This has solution $\chi(t) = \chi(0) = \frac{1}{RC}t$

$$\chi(0) = V_c(0) - V_{DD}$$
So $\chi(t) = -V_{DD} = \frac{-t}{RC}$

Lastly change variables back to Vc.

$$V_{c} = \chi + V_{DD} = V_{DD} - V_{DD} e^{-6/Rc}$$

3

EECS 16B Fall 2020 Discussion 2B

2 Graphing RC Responses

Consider the following RC Circuit with a single resistor R, capacitor C, and voltage source V(t).

Figure 4: Example Circuit

a) Let's suppose that at t = 0, the capacitor is charged to a voltage V_{DD} ($V_c(0) = V_{DD}$) and that V(t) = 0 for all $t \ge 0$. Plot the response $V_c(t)$.

V(t) = 0 for all $t \ge 0$. Plot the response $V_c(t)$.

Recall that $V_c(t) = V_{DD} e^{-\frac{1}{Rc}} t$ We can plot this on a graphing calculator

b) Now let's suppose that at t=0, the capacitor is uncharged $(V_c(0)=0)$ and that $V(t)=V_{DD}$ for all $t \ge 0$. Plot the response $V_c(t)$.

Recall that
$$V_{c}(t) = V_{DD}(1 - e^{-\frac{1}{R_{c}}t})$$
.
The plot is shown below

EECS 16B Fall 2020 Discussion 2B

To better understand our responses, we now define a **time constant** which is a measure of how long it takes for the capacitor to charge or discharge. Mathematically, we define τ as the time at which $V_C(\tau)$ is $\frac{1}{e}=36.8\%$ away from its steady state value.

Figure 5: Different values of capacitor voltage at different times, relative to τ .

c) Suppose that $V_{DD} = 5 \text{ V}$, $R = 100 \Omega$, and $C = 10 \mu\text{F}$. What is the time constant τ for this circuit?

Let's take the discharging case from port (a). By definition
$$T$$
 is the time at which $V_c(T) = \frac{V_{pp}}{e}$
We can solve for T as follows:

$$V_{c}(T) = V_{po} e^{-T/RC} = V_{po}$$

$$e^{-T/RC} = \frac{1}{e}$$

$$-T/RC = \ln(\frac{1}{e}) = -1$$

$$-T/RC = \ln(\frac{1}{e}) = -1$$

$$-T/RC = \ln(\frac{1}{e}) = -1$$

d) Going back to part (b), on what order of magnitude of time (nanoseconds, milliseconds, 10's of seconds, etc.) does this circuit settle (V_c is > 95% of its value as $t \to \infty$)?

Looking at the graph above, it will take 3T to reach 95% of the steady state value. Since
$$T = RC = lms$$
, it will take 3ms to reach within 0.95 Vpv.

5

e) Give 2 ways to reduce the settling time of the circuit if we are allowed to change one component in the circuit.

T=RC. To reduce the time constant, we should either decrease R or decrease C.

f) Suppose we have a source V(t) that alternates between 0 and $V_{DD} = 1 \,\text{V}$. Given $RC = 0.1 \,\text{s}$, plot the response V_c if $V_c(0) = 0$.

V(t) alternates between I and D. However, it stays constant from [0,1), (1,2), ... Therefore, we can solve the differential equations assume V(t) is constant over an interval.

Plot will look like this

Note that t=0.1s and we wait for before switching V(t).

g) Now suppose we have the same source V(t) but $RC = 1 \,\mathrm{s}$, plot the response V_c if $V_c(0) = 0$.

Here T=1s meaning after 1s we will only reach 63% of V_{DD} . Note that $63\% = 1 - \frac{1}{9}$.

