EECS 16

Logo credits go to Moses Won

Discussion 3B

Multivariate Differential Equations

$$\frac{d}{dt}\vec{x} = A\vec{x} + \vec{b}$$

Recap

We currently know how to solve first-order differential equations

- Homogeneous Case: $x'(t) = \lambda x(t)$
- Constant Input: $x'(t) = \lambda x(t) + u$
- Functional Input: $x'(t) = \lambda x(t) + u(t)$ Solution to these differential equations are: $\begin{cases}
 e^{4t} \\
 e^{4t}
 \end{cases}$ The solution to these differential equations are:

• Homogeneous Case:
$$\chi(t) = \chi(\circ) e^{\lambda t}$$

• Constant Input:
$$\chi(t) = \chi(0) e^{\lambda t} + \frac{1}{\lambda} (e^{\lambda} - 1)$$

• Constant Input:
$$\chi(t) = \chi(0) e^{\lambda t} + \frac{u}{\lambda} (e^{\lambda t} - 1)$$

• Functional Input: $\chi(t) = \chi(0) e^{\lambda t} + \int_{0}^{t} u(\tau) e^{\lambda(t-\tau)} d\tau$

Vector Differential Equations

A vector differential equation is one that involves multiple variables.

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Here **x** is a vector and the individual entries x_1 , ..., x_n are called **states**.

Formally this is called a **state-space** equation, and we'll formalize this in a couple of weeks.

Battle Plan

 $\frac{dx_1}{dt} = 2x_1 + 3x_2$ $\frac{dx_2}{dt} = -x_1 + 7x_2$

How do we solve these vector differential equations?

$$\frac{1}{76} \vec{X} = A \vec{X}$$

- 1. Find the eigenvectors and eigenvalues of A.
- 2. Define a new variable $z = V^{-1}x$ to set-up the differential equation:

- 3. Solve the scalar differential equations $z_i(t)$ using the formulas in Slide 1 $\frac{d}{dt}$ $z_i^* = \lambda_i z_i^*$ \rightarrow $z_i^*(t) = A e^{\lambda_i t}$
- 4. Convert z back into x using x = Vz.

Diagonalization

A matrix A is diagonalizable if it has n linearly independent eigenvectors.

Example: A =
$$\begin{bmatrix} -6 & 3 \\ 4 & 5 \end{bmatrix}$$
 is diagonalizable since it has 2 L.I. eigenvectors.

$$\lambda_{1} = -7 \quad \vec{V}_{1} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad \lambda_{2} = 6 \quad \vec{V}_{2} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 4 \\ 1 \end{bmatrix} & \begin{bmatrix} 4 \\ 1 \end{bmatrix} & \begin{bmatrix} 4 \\ -1 \end{bmatrix} & \text{are} \\ \text{Linearly Independent} \\ B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} & \text{B is not diagonalizable}$$

More importantly, we can write $A = V \Lambda V^{-1}$. The proof is in Dis 3B Q1 V is a matrix of eigenvectors, Λ is a diagonal matrix of eigenvalues.

Warning: Not every matrix is diagonalizable and there is no relationship between diagonalizability and invertibility.

Dis 3B Q1

Consider a matrix **A** with "eigenpairs:" $(\lambda_1, V_1), ..., (\lambda_n, V_n)$

$$V = \begin{bmatrix} | & & | \\ \vec{v}_1 & \dots & \vec{v}_n \\ | & & | \end{bmatrix} \quad \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Show that $AV = V\Lambda$:

Dis 3B Q1

Important matrix trick:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a_1 & \dots & a_n \end{bmatrix}$$

Important matrix trick:
$$A = \begin{bmatrix} 1 & 1 & 1 \\ \vec{a_1} & \vec{a_n} & \vec{a_n} \end{bmatrix} \qquad A\vec{x} = \begin{bmatrix} 1 & 1 & 1 \\ \vec{a_1} & \cdots & \vec{a_n} \\ \vec{a_1} & \cdots & \vec{a_n} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \\
= x_1 \vec{a_1} + \dots + x_n \vec{a_n}$$
Scalars