EECS 16

Logo credits go to Moses Won

Discussion 7B

Linearization & Stability

Discussion Feedback

Any feedback is welcome!

• https://forms.gle/HQtVmncbCj2aj69z9

Recap

We've learned how to model state-space equations

- CT Systems were modeled by differential equations.
- DT Systems were modeled by difference equations.

A state-space system is **linear** if it can be written as:

Continuous-Time

$$\frac{d}{dt}\vec{x}(t) = \mathbf{A}\vec{x}(t) + \mathbf{B}\vec{u}(t) \qquad \vec{x}[t+1] = \mathbf{A}\vec{x}[t] + \mathbf{B}\vec{u}[t]$$

eigenvalues
$$\lambda_{1,...,7}$$
 kn

Discrete-Time

$$\vec{x}[t+1] = \mathbf{A}\vec{x}[t] + \mathbf{B}\vec{u}[t]$$

Linear systems are "nice" since they are predictable and easy to analyze.

Linearization

$$\frac{d}{dt}\vec{\chi} = f(\vec{x}, \vec{u})$$
if f is nonlinear

If a system is **nonlinear**, not all hope is lost! **Linearization** is a way to create a linear approximation of the function f(x, u) around an operating point (x^*, u^*) .

Note that we are approximating f(x, u) and NOT the function x.

Taylor's Theorem says we can approximate f(x, u) at the point (x^*, u^*) as:

$$f(x,u) = f(x^*, u^*) + \frac{\partial f(x^*, u^*)}{\partial x} \cdot (x - x^*) + \frac{\partial f(x^*, u^*)}{\partial u} \cdot (u - u^*)$$
Scalar func?

We can use the **Jacobians** of the function **f** to create a **linear** approximation.

$$f(\vec{x},\vec{u}) = f(\vec{x}^*, \vec{u}^*) + J_{\vec{x}}(x^*, u^*) \cdot (\vec{x} - \vec{x}^*) + J_{\vec{u}}(\vec{x}^*, \vec{u}^*) \cdot (\vec{u} - \vec{u}^*)$$
vector func.
$$A \cdot \vec{x}e + \beta \vec{u}_e + c \qquad \text{hon-linear}$$

Visualization
$$f(x) = f(x^*) + \frac{\partial f(x^*) \cdot (x - x^*)}{\partial x}$$

region: linear approxis

Equilibrium Points

An **equilibrium point** is a point $(\mathbf{x}^*, \mathbf{u}^*)$ where the system does not change.

Equilibrium points for linear systems can be solved as:

Continuous-Time

Discrete-Time

$$\frac{d}{dt}\vec{x}(t) = \mathbf{A}\vec{x}(t) + \mathbf{B}\vec{u}(t) = \vec{0} \qquad \vec{x}[t+1] = \mathbf{A}\vec{x}[t] + \mathbf{B}\vec{u}[t] = \vec{x}[t]$$

Equilibrium points of nonlinear systems can be found by solving

$$\frac{d}{dt} \vec{\chi} = f(\vec{x}, \vec{u}) = \vec{0}$$

$$\chi(t+i) = f(\vec{\chi}, \vec{u}) = \chi(t)$$

$$\zeta(t+i) = f(\vec{\chi}, \vec{u}) = \chi(t)$$

Putting Everything Together

To linearize a system, we take the following steps:

- 1. Find all equilibrium points $(\mathbf{x}^*, \mathbf{u}^*)$ of the function $\mathbf{f}(\mathbf{x}, \mathbf{u})$.
- 2. Pick one of the equilibrium points to linearize around.
- 3. Compute the Jacobian matrices J_x and J_u and evaluate them at $(\mathbf{x}^*, \mathbf{u}^*)$.
- 4. Then linearized system will be of the form:

Continuous-Time

Discrete-Time

$$\frac{d}{dt}\vec{x}_{\ell}(t) = J_{\vec{x}}\vec{x}_{\ell}(t) + J_{\vec{u}}\vec{u}_{\ell}(t) + \int_{\vec{u}}\vec{u}_{\ell}(t) + \int_{\vec{u}}\vec{u}_{\ell}(t) + \int_{\vec{u}}\vec{u}_{\ell}(t) + \int_{\vec{u}}\vec{u}_{\ell}[t] + J_{\vec{u}}\vec{u}_{\ell}[t]$$

Note: The equilibrium conditions are different for CT / DT Systems but Steps 2 & 3 are identical for CT and DT Systems.

Stability

$$\frac{d}{dt} \hat{\chi} = A \hat{x} + B \hat{u}$$

A state-space model is **asymptotically stable** if:

• Given zero input (u = 0), the state x(t) converges to 0.

We say a system is BIBO (Bounded Input Bounded Output) stable if:

- **For every** bounded input u(t), the output x(t) is also bounded.
 - A function f(t) is bounded if |f(t)| < B where B is a finite value.

Whenever we say **stable** in this class, we are referring to asymptotically stable despite doing all our proofs for BIBO stability.

What you need to know:

A linear continuous-time system is stable if:

$$\Re[\lambda_i] < 0$$
 for all $i = 1, \dots, n$

$$X_{i}(t) = a_{i}e^{\lambda_{i}t} + ... + a_{n}e^{\lambda_{n}t}$$
 if $Re(\lambda_{i}) = 0$ -7 unstable want them go to zero

A **linear** discrete-time system is **stable** if:

$$|\lambda_i| < 1$$
 for all $i = 1, ..., n$
 $\chi_i(t) = a_i \lambda_i^t + ... + a_n \lambda_n^t$
 $\lambda_i^t + ... + a_n \lambda_n^t$
 $\lambda_i^t + ... + a_n \lambda_n^t$

$$\frac{\partial}{\partial t} \dot{X} = A\dot{X}$$

$$\lambda_{1,...} \lambda_{n} \text{ eigvals of } A$$

$$Re(\lambda) = 0 - 7 \text{ unstable}$$

$$\dot{X}(t+1) = A\dot{X}(t)$$

$$\left(\frac{1}{2}\right)^{t} \rightarrow 0 \text{ as } t \rightarrow \infty$$

$$\left(\frac{1}{2}\right)^{t} \rightarrow \infty \text{ as } t \rightarrow \infty$$

$$\left(\frac{1}{2}\right)^{t} \rightarrow \infty \text{ as } t \rightarrow \infty$$

$$\left(\frac{1}{2}\right)^{t} \rightarrow 0 \text{ unstable}$$