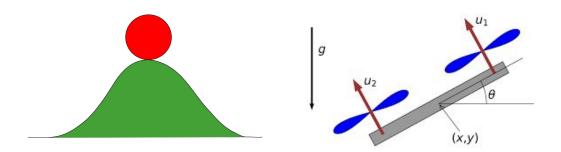
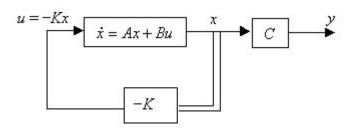
EECS 16

Logo credits go to Moses Won

Discussion 8B

Feedback Control





Recap

Last Wednesday, we analyzed the stability of a state-space model.

- A system is **BIBO Stable** if for every input u, the state **x** is bounded.
- A system is **asymptotically stable** if given zero input, **x** converges to **0**.
- A Continuous-Time System is **stable** if $\Re[\lambda_i] < 0$ for all i = 1, ..., n
- A Discrete-Time System is **stable** if $|\lambda_i| < 1$ for all i = 1, ..., n

A system is controllable if it can reach any state in its state-space after a finite number of time-steps.

$$C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

If C is full rank, then the system is controllable.

Feedback Control

If a system is unstable, it's possible to stabilize it!

$$\vec{x}[t+1] = A\vec{x}[t] + B\vec{u}[t]$$

By inputting $\mathbf{u}[\mathbf{t}] = \mathbf{K} \mathbf{x}[\mathbf{t}]$, the **closed-loop** system will be

$$\vec{x}[t+1] = (A+BK)\vec{x}[t]$$

now system is stable if the eigs of A+BK,
$$|\chi| < |\chi|$$

This system is stable when the eigenvalues of A + BK are stable.

Note that in practice, we will use $\mathbf{u}[\mathbf{t}] = -\mathbf{K} \mathbf{x}[\mathbf{t}]$ as negative feedback.

Controllability

If a system is **controllable**, then it is possible to assign the eigenvalues of **A** +**BK** anywhere in the complex plane.

- Even if a system is uncontrollable, it may be possible to stabilize it. However, we can no longer place the eigenvalues arbitrarily.
- Proof is out of scope, but if you're interested look up Controllable
 Canonical Form

As we'll see in discussion today, some eigenvalues are "better" than others.