Discussion 9B

Spectral Theorem & Outer Products
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Recap

New module on Linear Algebra & Machine Learning

e Using Linear Algebra / ML we can learn how our systems behave.

e Last time, we looked at System Identification which used Least-Squares

to learn an unknown state-space model.

e In lecture, you were introduced to the Singular Value Decomposition
which is a way to break down a matrix as a sum of its “features.”
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Singular Value Decomposition

The SVD has a lot of applications in Image Processing, ML, Controls, etc.
e It tells us which features of a matrix are the “most important.”
e Used in Data Science to perform dimensionality reduction.
e The SVD is also used in Controls to reach a target with “minimum energy”
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Inner Products

Today, we will focus on the Linear Algebra fundamentals that build up to the

Singular Value Decomposition.

An inner product is a way to multiply two vectors and output a scalar.
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Orthogonality ;
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Two vectors, u and v are orthogonal if their inner product is 0.
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A set of vectors {uy,...,uU,}is orthonormal if all vectors are mutually
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A square matrix with orthonormal columns is called a unitary or orthonormal
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Given an nxn symmetric matrix A, the following statements are true:
1. A has real eigenvalues.
2. A has n linearly independent eigenvectors
a. In other words, A is always diagonalizable.
3. The eigenvectors of A can form an orthonormal basis for R".

a. This means V is unitary and that A = VAV = VAVT,
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